博碩士論文 101324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.225.175.230
姓名 黎閔智(Min-chih Li)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
(Microwave-assisted hydrothermal preparation of metal sulfide powder and photochemistry for hydrogen evolution)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 使用Aspen Plus模擬連續式反應器之端羥基聚丁二烯自由基聚合和分離純化程序設計★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 能源危機與環保問題為本世紀重要的挑戰,乾淨的氫能源成為取代石
化燃料的最佳替代能源,使得發展光觸媒來分解水產氫的研究變得很重要,
使用光觸媒有效利用太陽能分解水產氫,便是此研究的目標。
實驗中使用的ZIS (ZnmIn2S3+m)可見光光觸媒,隨著溫度的上升有助於
提升水分解效率,我們調整核殼結構(Coreshell)內部Nanoshell(Ag@Au)的
吸收波段至紅外光,將太陽能轉換為熱能,形成光觸媒侷部加熱的效應,
最高能有效提升光觸媒的產氫效率達74%。Nanoshell 是由銀與金奈米粒子
所組成,在太陽光照射下其具有表面電漿共振效應,使用吸收波長在700
nm 左右的Nanoshell 與光觸媒形成核殼結構後,表面電漿共振能量傳遞給
外層的光觸媒,利於電子電洞的分離,提升產氫效率最高可達1.62 倍。
我們也改變Nanoshell 上不同SiO2 厚度,觀察光觸媒與Nanoshell 之
間的交互作用對於產氫效率的影響,當無SiO2 在兩者之間時,電子會在兩
者之間傳遞,而過厚的SiO2 會阻礙表面電漿效應的能量傳遞,而使得光觸
媒產氫效率提升幅度下降。
將光觸媒與Nanoshell 直接合成核殼結構,可能會有光觸媒過厚或是
部分Nanoshell 裸露的情形產生,所以我們嘗試先在ZIS 表面改質,再與
Nanoshell 合成核殼結構,反之,也可以在Nanoshell 表面改質,再與ZIS
合成核殼結構,使得每個Nanoshell 的表面都有均勻分布的ZIS,得到最佳的核殼結構。
摘要(英) Energy crisis and environmental protection are big challenges of this century. Hydrogen is the most promising replacement for fossil fuels. Therefore, the development of visible-light-driven photocatalysts for water splitting is critical. The purpose of this study is to effectively use photocatalysts to change solar energy into hydrogen energy.
We used ZIS (ZnmIn2S3+m) as visible-light-driven photocatalyst. Its water splitting reaction rate increased with the temperature. The absorption of the nanoshells in the coreshell nanoparticles can be adjusted systematically from visible light to IR range making the solar energy into heat and resulted in local thermal effect which can effectively enhance hydrogen evolution to 74%. Because the nanoshell was formed by silver and gold nanoparticles, it had the surface plasmon resonance. Using nanoshells absorbing at 700 nm can transfer enengy to photocatalysts and separated the combination of electrons and holes in photocatalysts making the enhancement of hydrogen evolution to 1.62 times.
We also changed the thickness of SiO2 on the nanoshells to observe the interaction between nanoshells and coreshells which might influence the enhancement of hydrogen evolution. When there was no SiO2, electron would transfer between nanoshells and photocatalysts. Thicker thickness of SiO2 might hinder the translation of energy from nanoshells decreasing the enhancement of hydrogen evolution.
Making photocatalysts directly into coreshell structures might cause thicker shell or uncovered nanoshells. So we try to mdify the surface of ZIS or mdify the surface of nanoshells and formed coreshell, making uniform distribution of ZIS on nanoshells.
關鍵字(中) ★ 微波輔助
★ 金屬硫化物粉體
★ 產氫
★ 核殼結構
★ 光化學
關鍵字(英) ★ Microwave-assisted
★ Metal Sulfide Powder
★ Hydrogen evolution
★ Coreshell
★ Photochemistry
論文目次 摘要I
AbstractIII
致謝IV
目錄V
圖目錄VIII
表目錄XV
第一章緒論1
1-1前言1
1-2光觸媒的發展2
1-3研究動機5
第二章文獻回顧7
2-1光觸媒分解水產氫7
2-2光觸媒材料9
2-3ZnIn2S4光觸媒12
2-4(Ag-In-Zn)光觸媒14
2-5微波水熱法合成光觸媒15
2-6表面電漿效應介紹18
2-6-1光觸媒與表面電漿效應24
第三章實驗方法30
3-1實驗藥品30
3-2分析儀器與實驗儀器33
3-3實驗步驟35
3-3-1微波水熱法合成ZnmIn2S3+m(ZIS)35
3-3-2固態溶液粉體產氫速率量測36
3-3-3奈米殼結構(Nanoshell,Ag@Au@SiO2)製作38
3-3-4核/殼(Ag@Au@SiO2/ZnIn2S4)結構合成(微波反應)40
3-3-5核/殼(Ag@Au@SiO2/ZnIn2S4)結構合成(ZIS表面改質)40
3-3-6核/殼(Ag@Au@SiO2/ZnIn2S4)結構合成(Nanoshell表面改質)
40
3-3-7微波水熱法合成纖鋅礦(ZnS)41
3-3-8微波水熱法合成斜方晶系(AgInS2)41
3-3-9微波水熱法合成AgInZnS固態溶液42
第四章結果與討論43
4-1微波水熱法製備ZnmIn2S3+m(ZIS)43
4-1-1粉體性質與結構分析43
4-1-2粉體產氫之量測48
4-2奈米殼結構(Nanoshell,Ag@Au@SiO2)性質與結構分析50
4-2-1奈米殼結構(Nanoshell,Ag@Au@SiO2)的溫度效應55
4-3核/殼(Core-shell)(Ag@Au@SiO2/ZnIn2S4)光觸媒57
4-3-1奈米殼結構(Nanoshell)應用於ZIS光觸媒57
4-3-2核/殼(Ag@Au@SiO2/ZnIn2S4)光觸媒性質與結構分析60
4-3-3核/殼(Ag@Au@SiO2/ZnIn2S4)光觸媒產氫之量測65
4-3-4核/殼(Ag@Au@SiO2/ZnIn2S4)光觸媒螢光光譜分析69
4-3-5核/殼(Ag@Au@SiO2/ZnIn2S4)時間解析光激螢光光譜分析72
4-4核/殼(Core-shell)(Ag@Au@SiO2/ZnIn2S4)光觸媒(低濃度)75
4-4-1核/殼(Ag@Au@SiO2/ZnIn2S4)(低濃度)光觸媒產氫量測79
4-4-2核/殼(Ag@Au@SiO2/ZnIn2S4)(低濃度)光觸媒之光電轉換效
率84
4-5核/殼(Ag@Au@SiO2/ZnIn2S4)結構(ZIS表面改質)87
4-6核/殼(Ag@Au@SiO2/ZnIn2S4)結構(Nanoshell表面改質)92
4-7微波水熱法製備纖鋅礦(wurtize)結構ZnS94
4-8微波水熱法製備三成分AgInS295
4-9微波水熱法製備四成分AgInZnS97
第五章結論與未來展望101
附錄103
參考文獻106
參考文獻 1. Bull, S. R., Renewable energy today and tomorrow. Proceedings of the
IEEE, 2001. 89(8): p. 1216-1226.
2. Crabtree, G. W., M. S. Dresselhaus, and M. V. Buchanan, The hydrogen
economy. Physics Today, 2004. 57(12): p. 39-44.
3. Turner, J. A., A realizable renewable energy future. Science, 1999.
285(5428): p. 687-689.
4. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a
Semiconductor Electrode. Nature, 1972. 286( 5772): p. 474-476.
5. Maeda, K. and K. Domen, New non-oxide photocatalysts designed for
overall water splitting under visible light. The Journal of Physical
Chemistry C, 2007. 111(22): p. 7851-7861.
6. Lewis, N. S., Light work with water. Nature, 2001. 414(6864): p.
589-590.
7. Kudo, A., Recent progress in the development of visible light-driven
powdered photocatalysts for water splitting. International journal of
hydrogen energy, 2007. 32(14): p. 2673-2678.
8. Kawai, T. and T. Sakata, Conversion of carbohydrate into hydrogen fuel
by a photocatalytic process. 1980.
9. Tsuji, I., H. Kato, H. Kobayashi, and A. Kudo, Photocatalytic H2
Evolution Reaction from Aqueous Solutions over Band
Structure-Controlled (AgIn) x Zn2 (1-x) S2 Solid Solution Photocatalysts
with Visible-Light Response and Their Surface Nanostructures. Journal of
the American Chemical Society, 2004. 126(41): p. 13406-13413.
10. Kudo, A., H. Kato, and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters,
2004. 33(12): p. 1534-1539.
11. Steele, B. C. and A. Heinzel, Materials for fuel-cell technologies. Nature,
2001. 414(6861): p. 345-352.
12. Wu, C.-C., H.-F. Cho, W.-S. Chang, and T.-C. Lee, A simple and
environmentally friendly method of preparing sulfide photocatalyst.
Chemical Engineering Science, 2010. 65(1): p. 141-147.
13. Chen, Y., S. Hu, W. Liu, X. Chen, L. Wu, X. Wang, P. Liu, and Z. Li,
Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with
different visible-light photocatalytic performance. Dalton Transactions,
2011. 40(11): p. 2607-2613.
14. Chen, Y., S. Hu, W. Liu, X. Chen, L. Wu, X. Wang, P. Liu, and Z. Li,
Controlled syntheses of cubic and hexagonal ZnIn 2S4 nanostructures with
different visible-light photocatalytic performance. Dalton Transactions,
2011. 40(11): p. 2607-2613.
15. Wang, T. X., S. H. Xu, and F. X. Yang, ZnIn2S4 nanopowder as an
efficient visible light-driven photocatalyst in the reduction of aqueous Cr
(VI). Materials Letters, 2012. 83: p. 46-48.
16. Shen, S., J. Chen, X. Wang, L. Zhao, and L. Guo, Microwave-assisted
hydrothermal synthesis of transition-metal doped ZnIn2S4 and its
photocatalytic activity for hydrogen evolution under visible light. Journal
of Power Sources, 2011. 196(23): p. 10112-10119.
17. Hu, X., J. C. Yu, J. Gong, and Q. Li, Rapid mass production of
hierarchically porous ZnIn2S4 submicrospheres via a
microwave-solvothermal process. Crystal Growth and Design, 2007.
7(12): p. 2444-2448.
18. Shen, S., J. Chen, X. Wang, L. Zhao, and L. Guo, Microwave-assisted
hydrothermal synthesis of transition-metal doped ZnIn 2S4and its
photocatalytic activity for hydrogen evolution under visible light. Journal
of Power Sources, 2011. 196(23): p. 10112-10119.
19. Shen, S., L. Zhao, and L. Guo, Cetyltrimethylammoniumbromide
(CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient
visible-light-driven photocatalyst for hydrogen production. International
journal of hydrogen energy, 2008. 33(17): p. 4501-4510.
20. Shen, J., J. Zai, Y. Yuan, and X. Qian, 3D hierarchical ZnIn2S4: The
preparation and photocatalytic properties on water splitting. International
journal of hydrogen energy, 2012. 37(22): p. 16986-16993.
21. Shen, S., L. Zhao, and L. Guo, ZnmIn 2S3+ m (m= 1–5, integer): A new
series of visible-light-driven photocatalysts for splitting water to hydrogen.
International journal of hydrogen energy, 2010. 35(19): p. 10148-10154.
22. Olekseyuk, I., V. Halka, O. Parasyuk, and S. Voronyuk, Phase equilibria in
the AgGaS2–ZnS and AgInS2–ZnS systems. Journal of alloys and
compounds, 2001. 325(1): p. 204-209.
23. Torimoto, T., T. Adachi, K.-i. Okazaki, M. Sakuraoka, T. Shibayama, B.
Ohtani, A. Kudo, and S. Kuwabata, Facile synthesis of ZnS-AgInS2 solid
solution nanoparticles for a color-adjustable luminophore. Journal of the
American Chemical Society, 2007. 129(41): p. 12388-12389.
24. Kudo, A., I. Tsuji, and H. Kato, AgInZn7S9 solid solution photocatalyst for
H2 evolution from aqueous solutions under visible light irradiation.
Chemical communications, 2002(17): p. 1958-1959.
25. Serrano, D., M. Uguina, R. Sanz, E. Castillo, A. Rodrıguez, and P.
Sanchez, Synthesis and crystallization mechanism of zeolite TS-2 by microwave and conventional heating. Microporous and mesoporous
materials, 2004. 69(3): p. 197-208.
26. Shahid, R., M. S. Toprak, and M. Muhammed, Microwave-assisted low
temperature synthesis of wurtzite ZnS quantum dots. Journal of Solid
State Chemistry, 2012. 187: p. 130-133.
27. Ge, S. X., Z. Y. Shui, Z. Zheng, and L. Z. Zhang, A general
microwave-assisted nonaqueous approach to nanocrystalline ternary metal
chalcogenide and the photoluminescence study of CoIn2S4. Optical
Materials, 2011. 33(8): p. 1174-1178.
28. Link, S., Z. L. Wang, and M. El-Sayed, Alloy formation of gold-silver
nanoparticles and the dependence of the plasmon absorption on their
composition. The Journal of Physical Chemistry B, 1999. 103(18): p.
3529-3533.
29. Link, S. and M. A. El-Sayed, Spectral properties and relaxation dynamics
of surface plasmon electronic oscillations in gold and silver nanodots and
nanorods. The Journal of Physical Chemistry B, 1999. 103(40): p.
8410-8426.
30. Raether, H., Springer tracts in modern physics. Vol. 111. 1988.
31. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, Nano-optics of
surface plasmon polaritons. Physics reports, 2005. 408(3): p. 131-314.
32. Barnes, W. L., A. Dereux, and T. W. Ebbesen, Surface plasmon
subwavelength optics. Nature, 2003. 424(6950): p. 824-830.
33. Mafuné, F., J.-y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe,
Formation and Size Control of Silver Nanoparticles by Laser Ablation in
Aqueous Solution. The Journal of Physical Chemistry B, 2000. 104(39): p.
9111-9117.
34. Link, S. and M. A. El-Sayed, Size and Temperature Dependence of the
Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of
Physical Chemistry B, 1999. 103(21): p. 4212-4217.
35. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz, The optical
properties of metal nanoparticles: the influence of size, shape, and
dielectric environment. The Journal of Physical Chemistry B, 2003.
107(3): p. 668-677.
36. Mock, J., M. Barbic, D. Smith, D. Schultz, and S. Schultz, Shape effects
in plasmon resonance of individual colloidal silver nanoparticles. The
Journal of chemical physics, 2002. 116(15): p. 6755-6759.
37. Kottmann, J. P., O. J. Martin, D. R. Smith, and S. Schultz, Plasmon
resonances of silver nanowires with a nonregular cross section. Physical
Review B, 2001. 64(23): p. 235402.
38. Lee, T. R., Metal Nanoshells for Plasmonically Enhanced Solar-to-Fuel
Photocatalytic Conversion ppt.
39. Maier, S. A. and H. A. Atwater, Plasmonics: Localization and guiding of
electromagnetic energy in metal/dielectric structures. Journal of Applied
Physics, 2005. 98(1): p. 011101.
40. Wei, A., Plasmonic nanomaterials, in Nanoparticles2004, Springer. p.
173-200.
41. Cushing, S. K., J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, M. Li, A. D.
Bristow, and N. Wu, Photocatalytic activity enhanced by plasmonic
resonant energy transfer from metal to semiconductor. Journal of the
American Chemical Society, 2012. 134(36): p. 15033-15041.
42. Kochuveedu, S. T., D.-P. Kim, and D. H. Kim, Surface-plasmon-induced
visible light photocatalytic activity of TiO2 nanospheres decorated by Aunanoparticles with controlled configuration. The Journal of Physical
Chemistry C, 2012. 116(3): p. 2500-2506.
43. Ingram, D. B. and S. Linic, Water splitting on composite
plasmonic-metal/semiconductor photoelectrodes: evidence for selective
plasmon-induced formation of charge carriers near the semiconductor
surface. Journal of the American Chemical Society, 2011. 133(14): p.
5202-5205.
44. Zhang, Z., Z. Wang, S.-W. Cao, and C. Xue, Au/Pt
Nanoparticle-Decorated TiO2 Nanofibers with Plasmon-Enhanced
Photocatalytic Activities for Solar-to-Fuel Conversion. The Journal of
Physical Chemistry C, 2013. 117(49): p. 25939-25947.
45. Torimoto, T., H. Horibe, T. Kameyama, K.-i. Okazaki, S. Ikeda, M.
Matsumura, A. Ishikawa, and H. Ishihara, Plasmon-enhanced
photocatalytic activity of cadmium sulfide nanoparticle immobilized on
silica-coated gold particles. The Journal of Physical Chemistry Letters,
2011. 2(16): p. 2057-2062.
46. Takahashi, T., A. Kudo, S. Kuwabata, A. Ishikawa, H. Ishihara, Y. Tsuboi,
and T. Torimoto, Plasmon-Enhanced Photoluminescence and
Photocatalytic Activities of Visible-Light-Responsive ZnS-AgInS2 Solid
Solution Nanoparticles. The Journal of Physical Chemistry C, 2012.
117(6): p. 2511-2520.
47. Duan, H. and Y. Xuan, Enhancement of light absorption of cadmium
sulfide nanoparticle at specific wave band by plasmon resonance shifts.
Physica E: Low-dimensional Systems and Nanostructures, 2011. 43(8): p.
1475-1480.
48. Li, J., S. K. Cushing, J. Bright, F. Meng, T. R. Senty, P. Zheng, A. D. Bristow, and N. Wu, Ag@ Cu2O core-shell nanoparticles as visible-light
plasmonic photocatalysts. ACS Catalysis, 2012. 3(1): p. 47-51.
49. Daneshvar, N., M. Rabbani, N. Modirshahla, and M. A. Behnajady,
Kinetic modeling of photocatalytic degradation of Acid Red 27 in
UV/TiO2 process. Journal of photochemistry and photobiology A:
Chemistry, 2004. 168(1–2): p. 39-45.
50. Landry, C. C., J. Lockwood, and A. R. Barron, Synthesis of chalcopyrite
semiconductors and their solid solutions by microwave irradiation.
Chemistry of materials, 1995. 7(4): p. 699-706.
指導教授 李岱洲(Tai-chou Lee) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明