參考文獻 |
1. Bull, S. R., Renewable energy today and tomorrow. Proceedings of the
IEEE, 2001. 89(8): p. 1216-1226.
2. Crabtree, G. W., M. S. Dresselhaus, and M. V. Buchanan, The hydrogen
economy. Physics Today, 2004. 57(12): p. 39-44.
3. Turner, J. A., A realizable renewable energy future. Science, 1999.
285(5428): p. 687-689.
4. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a
Semiconductor Electrode. Nature, 1972. 286( 5772): p. 474-476.
5. Maeda, K. and K. Domen, New non-oxide photocatalysts designed for
overall water splitting under visible light. The Journal of Physical
Chemistry C, 2007. 111(22): p. 7851-7861.
6. Lewis, N. S., Light work with water. Nature, 2001. 414(6864): p.
589-590.
7. Kudo, A., Recent progress in the development of visible light-driven
powdered photocatalysts for water splitting. International journal of
hydrogen energy, 2007. 32(14): p. 2673-2678.
8. Kawai, T. and T. Sakata, Conversion of carbohydrate into hydrogen fuel
by a photocatalytic process. 1980.
9. Tsuji, I., H. Kato, H. Kobayashi, and A. Kudo, Photocatalytic H2
Evolution Reaction from Aqueous Solutions over Band
Structure-Controlled (AgIn) x Zn2 (1-x) S2 Solid Solution Photocatalysts
with Visible-Light Response and Their Surface Nanostructures. Journal of
the American Chemical Society, 2004. 126(41): p. 13406-13413.
10. Kudo, A., H. Kato, and I. Tsuji, Strategies for the development of visible-light-driven photocatalysts for water splitting. Chemistry Letters,
2004. 33(12): p. 1534-1539.
11. Steele, B. C. and A. Heinzel, Materials for fuel-cell technologies. Nature,
2001. 414(6861): p. 345-352.
12. Wu, C.-C., H.-F. Cho, W.-S. Chang, and T.-C. Lee, A simple and
environmentally friendly method of preparing sulfide photocatalyst.
Chemical Engineering Science, 2010. 65(1): p. 141-147.
13. Chen, Y., S. Hu, W. Liu, X. Chen, L. Wu, X. Wang, P. Liu, and Z. Li,
Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with
different visible-light photocatalytic performance. Dalton Transactions,
2011. 40(11): p. 2607-2613.
14. Chen, Y., S. Hu, W. Liu, X. Chen, L. Wu, X. Wang, P. Liu, and Z. Li,
Controlled syntheses of cubic and hexagonal ZnIn 2S4 nanostructures with
different visible-light photocatalytic performance. Dalton Transactions,
2011. 40(11): p. 2607-2613.
15. Wang, T. X., S. H. Xu, and F. X. Yang, ZnIn2S4 nanopowder as an
efficient visible light-driven photocatalyst in the reduction of aqueous Cr
(VI). Materials Letters, 2012. 83: p. 46-48.
16. Shen, S., J. Chen, X. Wang, L. Zhao, and L. Guo, Microwave-assisted
hydrothermal synthesis of transition-metal doped ZnIn2S4 and its
photocatalytic activity for hydrogen evolution under visible light. Journal
of Power Sources, 2011. 196(23): p. 10112-10119.
17. Hu, X., J. C. Yu, J. Gong, and Q. Li, Rapid mass production of
hierarchically porous ZnIn2S4 submicrospheres via a
microwave-solvothermal process. Crystal Growth and Design, 2007.
7(12): p. 2444-2448.
18. Shen, S., J. Chen, X. Wang, L. Zhao, and L. Guo, Microwave-assisted
hydrothermal synthesis of transition-metal doped ZnIn 2S4and its
photocatalytic activity for hydrogen evolution under visible light. Journal
of Power Sources, 2011. 196(23): p. 10112-10119.
19. Shen, S., L. Zhao, and L. Guo, Cetyltrimethylammoniumbromide
(CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient
visible-light-driven photocatalyst for hydrogen production. International
journal of hydrogen energy, 2008. 33(17): p. 4501-4510.
20. Shen, J., J. Zai, Y. Yuan, and X. Qian, 3D hierarchical ZnIn2S4: The
preparation and photocatalytic properties on water splitting. International
journal of hydrogen energy, 2012. 37(22): p. 16986-16993.
21. Shen, S., L. Zhao, and L. Guo, ZnmIn 2S3+ m (m= 1–5, integer): A new
series of visible-light-driven photocatalysts for splitting water to hydrogen.
International journal of hydrogen energy, 2010. 35(19): p. 10148-10154.
22. Olekseyuk, I., V. Halka, O. Parasyuk, and S. Voronyuk, Phase equilibria in
the AgGaS2–ZnS and AgInS2–ZnS systems. Journal of alloys and
compounds, 2001. 325(1): p. 204-209.
23. Torimoto, T., T. Adachi, K.-i. Okazaki, M. Sakuraoka, T. Shibayama, B.
Ohtani, A. Kudo, and S. Kuwabata, Facile synthesis of ZnS-AgInS2 solid
solution nanoparticles for a color-adjustable luminophore. Journal of the
American Chemical Society, 2007. 129(41): p. 12388-12389.
24. Kudo, A., I. Tsuji, and H. Kato, AgInZn7S9 solid solution photocatalyst for
H2 evolution from aqueous solutions under visible light irradiation.
Chemical communications, 2002(17): p. 1958-1959.
25. Serrano, D., M. Uguina, R. Sanz, E. Castillo, A. Rodrıguez, and P.
Sanchez, Synthesis and crystallization mechanism of zeolite TS-2 by microwave and conventional heating. Microporous and mesoporous
materials, 2004. 69(3): p. 197-208.
26. Shahid, R., M. S. Toprak, and M. Muhammed, Microwave-assisted low
temperature synthesis of wurtzite ZnS quantum dots. Journal of Solid
State Chemistry, 2012. 187: p. 130-133.
27. Ge, S. X., Z. Y. Shui, Z. Zheng, and L. Z. Zhang, A general
microwave-assisted nonaqueous approach to nanocrystalline ternary metal
chalcogenide and the photoluminescence study of CoIn2S4. Optical
Materials, 2011. 33(8): p. 1174-1178.
28. Link, S., Z. L. Wang, and M. El-Sayed, Alloy formation of gold-silver
nanoparticles and the dependence of the plasmon absorption on their
composition. The Journal of Physical Chemistry B, 1999. 103(18): p.
3529-3533.
29. Link, S. and M. A. El-Sayed, Spectral properties and relaxation dynamics
of surface plasmon electronic oscillations in gold and silver nanodots and
nanorods. The Journal of Physical Chemistry B, 1999. 103(40): p.
8410-8426.
30. Raether, H., Springer tracts in modern physics. Vol. 111. 1988.
31. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, Nano-optics of
surface plasmon polaritons. Physics reports, 2005. 408(3): p. 131-314.
32. Barnes, W. L., A. Dereux, and T. W. Ebbesen, Surface plasmon
subwavelength optics. Nature, 2003. 424(6950): p. 824-830.
33. Mafuné, F., J.-y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe,
Formation and Size Control of Silver Nanoparticles by Laser Ablation in
Aqueous Solution. The Journal of Physical Chemistry B, 2000. 104(39): p.
9111-9117.
34. Link, S. and M. A. El-Sayed, Size and Temperature Dependence of the
Plasmon Absorption of Colloidal Gold Nanoparticles. The Journal of
Physical Chemistry B, 1999. 103(21): p. 4212-4217.
35. Kelly, K. L., E. Coronado, L. L. Zhao, and G. C. Schatz, The optical
properties of metal nanoparticles: the influence of size, shape, and
dielectric environment. The Journal of Physical Chemistry B, 2003.
107(3): p. 668-677.
36. Mock, J., M. Barbic, D. Smith, D. Schultz, and S. Schultz, Shape effects
in plasmon resonance of individual colloidal silver nanoparticles. The
Journal of chemical physics, 2002. 116(15): p. 6755-6759.
37. Kottmann, J. P., O. J. Martin, D. R. Smith, and S. Schultz, Plasmon
resonances of silver nanowires with a nonregular cross section. Physical
Review B, 2001. 64(23): p. 235402.
38. Lee, T. R., Metal Nanoshells for Plasmonically Enhanced Solar-to-Fuel
Photocatalytic Conversion ppt.
39. Maier, S. A. and H. A. Atwater, Plasmonics: Localization and guiding of
electromagnetic energy in metal/dielectric structures. Journal of Applied
Physics, 2005. 98(1): p. 011101.
40. Wei, A., Plasmonic nanomaterials, in Nanoparticles2004, Springer. p.
173-200.
41. Cushing, S. K., J. Li, F. Meng, T. R. Senty, S. Suri, M. Zhi, M. Li, A. D.
Bristow, and N. Wu, Photocatalytic activity enhanced by plasmonic
resonant energy transfer from metal to semiconductor. Journal of the
American Chemical Society, 2012. 134(36): p. 15033-15041.
42. Kochuveedu, S. T., D.-P. Kim, and D. H. Kim, Surface-plasmon-induced
visible light photocatalytic activity of TiO2 nanospheres decorated by Aunanoparticles with controlled configuration. The Journal of Physical
Chemistry C, 2012. 116(3): p. 2500-2506.
43. Ingram, D. B. and S. Linic, Water splitting on composite
plasmonic-metal/semiconductor photoelectrodes: evidence for selective
plasmon-induced formation of charge carriers near the semiconductor
surface. Journal of the American Chemical Society, 2011. 133(14): p.
5202-5205.
44. Zhang, Z., Z. Wang, S.-W. Cao, and C. Xue, Au/Pt
Nanoparticle-Decorated TiO2 Nanofibers with Plasmon-Enhanced
Photocatalytic Activities for Solar-to-Fuel Conversion. The Journal of
Physical Chemistry C, 2013. 117(49): p. 25939-25947.
45. Torimoto, T., H. Horibe, T. Kameyama, K.-i. Okazaki, S. Ikeda, M.
Matsumura, A. Ishikawa, and H. Ishihara, Plasmon-enhanced
photocatalytic activity of cadmium sulfide nanoparticle immobilized on
silica-coated gold particles. The Journal of Physical Chemistry Letters,
2011. 2(16): p. 2057-2062.
46. Takahashi, T., A. Kudo, S. Kuwabata, A. Ishikawa, H. Ishihara, Y. Tsuboi,
and T. Torimoto, Plasmon-Enhanced Photoluminescence and
Photocatalytic Activities of Visible-Light-Responsive ZnS-AgInS2 Solid
Solution Nanoparticles. The Journal of Physical Chemistry C, 2012.
117(6): p. 2511-2520.
47. Duan, H. and Y. Xuan, Enhancement of light absorption of cadmium
sulfide nanoparticle at specific wave band by plasmon resonance shifts.
Physica E: Low-dimensional Systems and Nanostructures, 2011. 43(8): p.
1475-1480.
48. Li, J., S. K. Cushing, J. Bright, F. Meng, T. R. Senty, P. Zheng, A. D. Bristow, and N. Wu, Ag@ Cu2O core-shell nanoparticles as visible-light
plasmonic photocatalysts. ACS Catalysis, 2012. 3(1): p. 47-51.
49. Daneshvar, N., M. Rabbani, N. Modirshahla, and M. A. Behnajady,
Kinetic modeling of photocatalytic degradation of Acid Red 27 in
UV/TiO2 process. Journal of photochemistry and photobiology A:
Chemistry, 2004. 168(1–2): p. 39-45.
50. Landry, C. C., J. Lockwood, and A. R. Barron, Synthesis of chalcopyrite
semiconductors and their solid solutions by microwave irradiation.
Chemistry of materials, 1995. 7(4): p. 699-706. |