參考文獻 |
[1] L. Lin, Y. Lin, L. Tang, J. Li. Electrochemical DNA Sensor by the Assembly of Graphene and DNA-Conjugated Gold Nanoparticles with Silver Enhancement Strategy. Analyst 2011, 22, 4732-4737.
[2] J. Zhang, W. Tong, Z. Dai, S. Xu, N. Guo, X. Wang. DNA Electrochemical Biosensor of Methylene Blue as the Hybridization Indicator. Proceedings of SPIE 2007, Vol. 6423.
[3] D. R. Thevenot, K. Toth, R. A. Durst, G. S. Wilson. Electrochemical Biosensors: Recommended Definitions and Classification. Biosensors and Bioelectronics 2001, 16, 121-131.
[4] V. Vyskocil, M. Blaskova, A. Hajkova, E. Horakova, Z. Krejcova, K. Stavkova, J. Wang. Electrochemical DNA Biosensors – Useful Diagnostic Tools for the Detection of Damage to DNA Caused by Organic Xenobiotics (A Review). Sensing in Electroanalysis 2012, 7, 141-162.
[5] T. G. Drummond, M. G. Hill, J. K. Barton. Electrochemical DNA Sensors. Nature Biotechnology 2003, 21, 1192-1199.
[6] R. Lao, S. Song, H. Wu, L. Wang, Z. Zhang, L. He, and C. Fan. Electrochemical Interrogation of DNA Monolayers on Gold Surfaces. Analytical Chemistry 2005, 77, 2005, 6475-6480.
[7] A.-E. Radi, J. L. A. Sanchez, E. Baldrich, C. K. O’Sullivan. Reagentless, Reusable, Ultrasensitive Electrochemical Molecular Beacon Aptasensor. Journal of the American Chemical Society 2006, 128, 117-124.
[8] S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, S. P. Singh. Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications: Review. Analytica Chimica Acta 2012, 737, 1-21.
[9] R. Gopikrishnan, K. Zhang, P. Ravichandran, S. Baluchamy, V. Ramesh, S. Biradar, P. Ramesh, J. Pradhan, J. C. Hall, A. K. Pradhan, G. T. Ramesh. Synthesis, Characterization and Biocompatibility Studies of Zinc Oxide (ZnO) Nanorods for Biomedical Application. Nano-Micro Letters 2010, 2, 31-36.
[10] K. Chatterjee, S. Sarkar, K. J. Rao, S. Paria. Core/Shell Nanoparticles in Biomedical Applications. Advances in Colloid and Interface Science 2014, 209, 8-39.
[11] C. Xu, C. Yang, B. Gu, S. Fang. Nanostructured ZnO for Biosensing Applications. Chinese Science Bullentin 2013, 58, 2563-2566.
[12] M. Izaki, T. Omi. Transparent Zinc Oxide Films Prepared by Electrochemical Rreaction. Applied Physics Letters 1996, Vol. 68, 2439-2440.
[13] M. Izaki, T. Omi. Characterization of Transparent Zinc Oxide Films Prepared by Electrochemical Reation. Journal of The Electrochemical Society 1997, Vol. 144, 1949-1952.
[14] D. Ramirez, H. Gomez, D. Lincot. Polystyrene Sphere Monolayer Assisted Electrochemical Deposition of ZnO Nanorods with Controlable Surface Density. Electrochimica Acta 2010, 55, 2191-2195.
[15] R. Turgeman, O. Gershevitz, O. Palchik, M. Deutsch, B. M. Ocko, A. Gedanken, C. N. Sukenik. Oriented Growth of ZnO Crystals on Self-Assembled Monolayers of Functionalized Alkyl Silanes. Crystal Growth & Design 2004, 4, 169-175.
[16] S. Peulon, D. Lincot. Cathodic Electrodeposition from Aqueous Solution of Dense or Open-Structured Zinc Oxide Films. Advanced Materials 1996, 8, 166-170.
[17] S. Peulon, D. Lincot. Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions. Journal of The Electrochemical Society 1998, Vol. 145, 864-874.
[18] A. Goux, T. Pauporté, J. Chivot, D. Lincot. Temperature Effects on ZnO electrodeposition. Electrochimica Acta 2005, 50, 2239-2248.
[19] S. Otani, J. Katayama, H. Umemoto, M. Matsuoka. Effect of Bath Temperature on the Electrodeposition Mechanism of Zinc Oxide Film from Zinc Nitrate Solution. Journal of The Electrochemical Society 2006, 153, C551-C556.
[20] Joseph I. Goldstein, Dale E. Newbury, Patrick Echlin, David C. Joy, Charles E. Lyman, Eric Lifshin, Linda Sawyer, Joseph R. Michael. Scanning Electron Microscopy and X-Ray Microanalysis. 3rd ed.; Kluwer Academic/Plenum Publisher: New York, USA, 2003.
[21] S. Hofmann. Springer Series in Surface Science: Auger- and X-Ray Photoelectron Spectroscopy in Materials Science. Springer: Berlin, 2013.
[22] W. E. Swartz. Report X-Ray Photoelectron Spectroscopy. Analytical Chemistry 1973, 45, 788-800.
[23] P. T. Kissinger, W. R. Heineman. Cyclic Voltammetry. Journal of Chemical Education 1983, Vol. 60, 702-706.
[24] C. G. Zoski. Handbook of Electrochemistry. 1st ed.; Elsevier: Amsterdam, Netherlands, 2007.
[25] R. S. Nicholson. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Analytical Chemistry 1965, 37, 1351-1355.
[26] S. H. DuVall, R. L. McCreery. Control of Catechol and Hydroquinone Electron-Transfer Kinetics on Native and Modified Glassy Carbon Electrodes. Analytical Chemistry 1999, 71, 4594-4602.
[27] A. M. Bond, S. W. Feldberg. Analysis of Simulated Reversible Cyclic Voltammetric Responses for a Charged Redox Species in the Absence of Added Electrolyte. The Journal of Physical Chemistry B 1998, 102, 9966-9974.
[28] G. A. Carriedo. The Use of Cyclic Voltammetry in the Study of the Chemistry of Metal-Carbonyls. Journal of Chemical Education 1988, 65, 1020-21022.
[29] B. J. Sanghavi, A. K Srivastava. Simultaneous Voltammetric Determination of Acetaminophen, Aspirin and Caffeine Using an In Situ Surfactant-Modified Multiwalled Carbon Nanotube Paste Electrode. Electrochimica Acta 2010, 55, 8638-8648.
[30] B. J. Sanghavi, S. M. Mobin, P. Mathur, G. K. Lahiri, A. K Srivastava. Biomimetic Sensor for Certain Catecholamines Employing Copper (II) Complex and Silver Nanoparticle Modified Glassy Carbon Paste Electrode. Biosensors and Bioelectronics 2013, 39, 124-132.
[31] B. J. Sanghavi, A. K Srivastava. Simultaneous Voltammetric Determination of Acetaminophen and Tramadol Using Dowex50wx2 and Gold Nanoparticles Modified Glassy Carbon Paste Electrode. Analytica Chimica Acta 2011, 706, 246-254.
[32] B. J. Sanghavi, A. K Srivastava. Adsorptive Stripping Differential Pulse Voltammetric Determination of Venlafaxine and Desvenlafaxine Employing Nafion-Carbon Nanotube Composite Glassy Carbon Electrode Electrochimica Acta 2011, 56, 4188-4196.
[33] S. M. Mobin, B. J. Sanghavi, A. K Srivastava, P. Mathur, G. K. Lahiri. Biomimetic Sensor for Certain Phenols Employing a Copper (II) Complex. Analytical Chemistry 2010, 82, 5983-5992.
[34] R. M. Wightman. Probing Cellular Chemistry in Biological Systems with Microelectrodes. Science 2006, 17, 1570-1574.
[35] J. A. Hagen, S. N. Kim, B. Bayraktaroglu, K. Leedy, J. L. Chavez, N. Kelley-Loughnane, R. R. Naik, M. O. Stone, Biofunctionalized Zinc Oxide Field Effect Transistors for Selective Sensing of Riboflavin with Current Modulation. Sensors 2011, 11, 6645-6655.
[36] J. A. Hagen, S. N. Kim, B. Bayraktaroglu, N. Kelley-Loughnane, R. R. Naik, M. O. Stone. DNA Aptamer Functionalized Zinc Oxide Field Effect Transistors for Liquid State Selective Sensing of Small Molecules. Proceedings of SPIE 2010, Vol. 7759, 775912-1.
[37] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. St. C. Smart. Resolving Surface Chemical States in XPS Analysis of First Row Transitional Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science 2010, 257, 887-898.
[38] G. Beamson, D. Briggs. High Resolution XPS of Organic Polymers - The Scienta ESCA300 Database, Wiley Interscience, 1992.
[39] D. J. Miller, M. C. Biesinger, N. S. McIntyre. Interactions of CO2 and CO at Fractional Atmosphere Pressure with Iron and Iron Oxide Surfaces: One Possible Mechanism for Surface Contamination. Surface and Interface Analysis 2002, 33, 299-305.
[40] C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell, J. R. Jr. Rumble. NIST Standard Reference Database 20, Version 3.4, 2003.
[41] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben. Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, 1992.
[42] M. Das, G. Sumana, R. Nagarajan, B. D. Malhotra. Application of Nanostructured ZnO Films For Electrochemical DNA Biosensor. Thin Solid Films 2010, 519, 1196-1201. |