博碩士論文 101324601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.226.222.76
姓名 武高恩(Cao-An Vu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Surface Modification by Electrodeposition of ZnO Nanorods as Electrochemical DNA Biosensors
(Surface Modification by Electrodeposition of ZnO Nanorods as Electrochemical DNA Biosensors)
相關論文
★ 類澱粉胜肽聚集行為之電腦模擬★ 溶解度參數計算及量測於HPLC純化胜肽程序之最佳化研究
★ 利用恆溫滴定微卡計量測蛋白質分子於溶液中之第二維里係數與自我聚集之行為★ 利用SPRi探討中性DNA探針相較於一般DNA探針在低鹽雜交環境下之優勢
★ 矽奈米線場效電晶體多點之核酸檢測研究★ 使用不帶電中性核酸探針於矽奈米線場效電晶體檢測去氧核醣核酸與微核醣核酸之研究
★ 運用nDNA 修飾引子於PCR及qPCR平台以提升專一性之研究★ 設計中性DNA引子及探針以提升PCR與qPCR專一性之研究
★ 使用中性不帶電去氧核醣核酸探針於矽奈米線場效電晶體檢測微核醣核酸之研究★ 使用不帶電中性核酸探針於原位雜交技術檢測微核醣核酸之研究
★ 設計不帶電中性核酸探針於矽奈米線場效電晶體來改善富含GC鹼基核醣核酸之檢測專一性★ 合成5’-MeNPOC-2’-deoxynucleoside p-methoxy phosphoramidite以作為應用於原位合成之新穎性中性核苷酸之研究
★ 立體紙基外泌體核酸萃取裝置應用於檢測不同微環境下癌細胞所釋放之外泌體與外泌體微小核醣核酸之表現量★ 利用抗原結合區段之抗體片段探針於矽奈米線場效電晶體來改善抗原檢測濃度極限之研究
★ 利用表面電漿共振影像儀驗證最適化之抗非專一性吸附場效電晶體表面於血清環境下之免疫測定★ 使用混合自組裝單層膜於矽奈米線場效電晶體檢測微小核醣核酸之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來有關DNA電化學生物感測器研究受到研究專家們熱烈的討論,由於感測器本身的高敏感度、精確性、簡單的設計、尺寸大小、低成本和低耗能。本次研究是利用氧化鋅奈米柱陣列表面固定化DNA偵測DNA的互補鹼基對。首先,氧化鋅(ZnO)奈米柱陣列藉由在玻璃表面以電沉積 的方式塗佈上銦錫氧化物,接者,探討最佳的電沉積 時間以及氯氣鋅(ZnCl2)與氯化鉀(KCl)的濃度,以提供高密度、大面積的氧化鋅奈米柱陣列。一般來說,氧化鋅奈米柱陣列的密度、分佈情形和尺寸大小與增加電沉積時間、氯化鋅和氯化鉀含量成正比關係,結果顯示在2.5mM氯化鋅、0.5mM氯化鉀和20mM過氧化氫透過反應時間25分鐘,獲得的氧化鋅奈米柱陣列有最高的密度,最後再利用3-環氧丙氧丙基(dimethylethoxysilane)當成交聯劑將固定DNA於表面,並且用循環電壓的方式評估感測器鐵氰化鉀(K3Fe(CN)6) 的變化,從氧化鋅奈米柱陣列循環電壓圖當中,可以看出氧化鋅奈米柱陣列循具有快速的電子轉移Fe(CN)64-/3- ,此外,氧化鋅奈米柱陣列相較於Das [42] 的納米結構氧化鋅薄膜,有更高的密度以及更大的表面積,能夠提供更佳的電導率。高密度ZnO和合成的DNA-ZnO/ITO生物感測器對於互補的鹼基對有極佳的偵測性和靈敏度,定量之偵測濃度可達10-9M 到 10-6M之間。
摘要(英) Recently, electrochemical DNA biosensors have received particular interest due to their advantages such as sensitivity, selectivity, accurate, simple design, small dimension, inexpensive platforms, and low power requirements. In this thesis, electrochemical DNA biosensors were developed by immobilizing probe DNA onto zinc oxide (ZnO) nanorod surface to detect its complementary sequence. ZnO nanorods were fabricated onto indium-tin-oxide (ITO) coated glass plate by electrodeposition. A survey of electrodeposition parameters including electrodeposition time, ZnCl2 and KCl concentrations was carried out in order to find a good experimental condition which supply a high density and large surface area nanorods as well as fully cover the deposited ITO plane. Generally, the density, distribution, and dimension of ZnO nanorods are more stable and increase with the gain of electrodeposition time, ZnCl2 and KCl content. The results indicated that the electrodeposition acchieved in the solution containing 2.5mM ZnCl2, 0.5mM KCl, 20mM H2O2 in 25 minutes would let the ZnO nanorods grow with extremely high density, next to each other and cover all the survey area of the surface. This parameter was chosen to fabricate ZnO nanorods for electrochemical DNA biosensors. After that, (3 – glycidoxypropyl) dimethylethoxysilane was attached with ZnO nanorods as a linker to immobilize probe DNA. Cyclic voltammetry was employed to evaluate the sensors’ electrochemical properties with assistance of potassium ferricyanide (K3Fe(CN)6) as an electrochemical indicator. Cyclic voltammograms of the sensors revealed that ZnO nanorods had fast electron transfer kinetics with Fe(CN)64-/3- redox couple. The peak current values of our ZnO nanorods are higher in comparison with those of Das et al. ‘s nanostructured ZnO films due to their higher density and larger surface area, suggesting that the developed ZnO nanorods exhibited greater conductivity. The electrochemical response of the DNA–nsZnO/ITO bioelectrodes has also been investigated as a function of complementary target DNA concentration from 10-9M to 10-6M. The results uncovered that DNA-nanorod ZnO/ITO biosensors possesed great detectivity and sensivity due to high density and large surface area of synthesized ZnO nanorods.
關鍵字(中) ★ 電化學的DNA生物感測器
★ 氧化鋅奈米棒
★ 電化學沉積法
★ 循環電壓處理
關鍵字(英) ★ electrochemical DNA biosensors
★ ZnO nanorods
★ electrodeposition
★ cyclic voltammetry
論文目次 摘要............................................................................................................................................i
Abstract………………………………………………………………………………………...ii
Acknowledgements……………………………………………………………………………iii
Table of Contents……………………………………………………………………………...iv
List of Figures………………………………………………………………………………...vii
Chapter 1: Introduction………………………………………………………………………...1
Chapter 2: Research Background………………………………………………………………2
2.1 Electrochemical DNA biosensors………………………………………………….2
2.1.1 Biosensors………………………………………………………………..2
2.1.2 Electrochemical DNA biosensors………………………………………..3
2.2 ZnO nanorods………………………………………………………………………5
2.3 Electrodeposition…………………………………………………………………..6
2.3.1 Applied Potential…………………………………………………………7
2.3.2 Bath temperature…………………………………………………………8
2.4 Scanning Electron Microscopy (SEM)…………………………………………...11
2.5 X-ray Photoelectron Spectroscopy (XPS)………………………………………...13
2.5.1 Principles of XPS analysis……………………………………………...14
2.5.2 XPS spectra……………………………………………………………..14
2.5.3 Instrumentation…………………………………………………………15
2.6 Cyclic voltammetry……………………………………………………………….16
Chapter 3: Materials & Methods……………………………………………………………...20
3.1 Materials…………………………………………………………………………..20
3.1.1 Chemicals……………………………………………………………….20
3.1.2 DNA…………………………………………………………………….20
3.1.3 Apparatus……………………………………………………………….20
3.1.4 Instruments……………………………………………………………...21
3.2 Experimental Methods:…………………………………………………………...21
3.2.1 Preparation for electrochemical deposition……………………………..22
3.2.2 ZnO nanorod electrochemical deposition……………………………....23
3.2.3 SEM observation………………………………………………………..23
3.2.4 Surface modification…………………………………………………....24
3.2.5 Phosphate buffer saline (PBS) solution preparation……………………24
3.2.6 Probe DNA immobilization…………………………………………….24
3.2.7 XPS analysis……………………………………………………………24
3.2.8 Target DNA detection…………………………………………………..25
3.2.9 Cyclic voltammetry measurements....…………………………………..25
Chapter 4: Results & Discussions…………………………………………………………….26
4.1 Characteristics of the ZnO nanorods by SEM after electrodeposition……………26
4.1.1 Detailed features and comparisons……………………………………..26
4.1.2 Summarization...………………………………………………………..53
4.2 XPS analysis……………………………………………………………………...54
4.2.1 XPS analysis after surface modification………………………………..54
4.2.2 XPS analysis after DNA immobilization……………………………….56
4.3 Electrochemical evaluations……………………………………………………...60
4.4 Sensory detection studies…………………………………………………………62
4.5 Linearity…………………………………………………………………………..63
Chapter 5: Conclusions……………………………………………………………………….64
References………………………………………………………………………………...…..66
參考文獻 [1] L. Lin, Y. Lin, L. Tang, J. Li. Electrochemical DNA Sensor by the Assembly of Graphene and DNA-Conjugated Gold Nanoparticles with Silver Enhancement Strategy. Analyst 2011, 22, 4732-4737.
[2] J. Zhang, W. Tong, Z. Dai, S. Xu, N. Guo, X. Wang. DNA Electrochemical Biosensor of Methylene Blue as the Hybridization Indicator. Proceedings of SPIE 2007, Vol. 6423.
[3] D. R. Thevenot, K. Toth, R. A. Durst, G. S. Wilson. Electrochemical Biosensors: Recommended Definitions and Classification. Biosensors and Bioelectronics 2001, 16, 121-131.
[4] V. Vyskocil, M. Blaskova, A. Hajkova, E. Horakova, Z. Krejcova, K. Stavkova, J. Wang. Electrochemical DNA Biosensors – Useful Diagnostic Tools for the Detection of Damage to DNA Caused by Organic Xenobiotics (A Review). Sensing in Electroanalysis 2012, 7, 141-162.
[5] T. G. Drummond, M. G. Hill, J. K. Barton. Electrochemical DNA Sensors. Nature Biotechnology 2003, 21, 1192-1199.
[6] R. Lao, S. Song, H. Wu, L. Wang, Z. Zhang, L. He, and C. Fan. Electrochemical Interrogation of DNA Monolayers on Gold Surfaces. Analytical Chemistry 2005, 77, 2005, 6475-6480.
[7] A.-E. Radi, J. L. A. Sanchez, E. Baldrich, C. K. O’Sullivan. Reagentless, Reusable, Ultrasensitive Electrochemical Molecular Beacon Aptasensor. Journal of the American Chemical Society 2006, 128, 117-124.
[8] S. K. Arya, S. Saha, J. E. Ramirez-Vick, V. Gupta, S. Bhansali, S. P. Singh. Recent Advances in ZnO Nanostructures and Thin Films for Biosensor Applications: Review. Analytica Chimica Acta 2012, 737, 1-21.
[9] R. Gopikrishnan, K. Zhang, P. Ravichandran, S. Baluchamy, V. Ramesh, S. Biradar, P. Ramesh, J. Pradhan, J. C. Hall, A. K. Pradhan, G. T. Ramesh. Synthesis, Characterization and Biocompatibility Studies of Zinc Oxide (ZnO) Nanorods for Biomedical Application. Nano-Micro Letters 2010, 2, 31-36.
[10] K. Chatterjee, S. Sarkar, K. J. Rao, S. Paria. Core/Shell Nanoparticles in Biomedical Applications. Advances in Colloid and Interface Science 2014, 209, 8-39.
[11] C. Xu, C. Yang, B. Gu, S. Fang. Nanostructured ZnO for Biosensing Applications. Chinese Science Bullentin 2013, 58, 2563-2566.
[12] M. Izaki, T. Omi. Transparent Zinc Oxide Films Prepared by Electrochemical Rreaction. Applied Physics Letters 1996, Vol. 68, 2439-2440.
[13] M. Izaki, T. Omi. Characterization of Transparent Zinc Oxide Films Prepared by Electrochemical Reation. Journal of The Electrochemical Society 1997, Vol. 144, 1949-1952.
[14] D. Ramirez, H. Gomez, D. Lincot. Polystyrene Sphere Monolayer Assisted Electrochemical Deposition of ZnO Nanorods with Controlable Surface Density. Electrochimica Acta 2010, 55, 2191-2195.
[15] R. Turgeman, O. Gershevitz, O. Palchik, M. Deutsch, B. M. Ocko, A. Gedanken, C. N. Sukenik. Oriented Growth of ZnO Crystals on Self-Assembled Monolayers of Functionalized Alkyl Silanes. Crystal Growth & Design 2004, 4, 169-175.
[16] S. Peulon, D. Lincot. Cathodic Electrodeposition from Aqueous Solution of Dense or Open-Structured Zinc Oxide Films. Advanced Materials 1996, 8, 166-170.
[17] S. Peulon, D. Lincot. Mechanistic Study of Cathodic Electrodeposition of Zinc Oxide and Zinc Hydroxychloride Films from Oxygenated Aqueous Zinc Chloride Solutions. Journal of The Electrochemical Society 1998, Vol. 145, 864-874.
[18] A. Goux, T. Pauporté, J. Chivot, D. Lincot. Temperature Effects on ZnO electrodeposition. Electrochimica Acta 2005, 50, 2239-2248.
[19] S. Otani, J. Katayama, H. Umemoto, M. Matsuoka. Effect of Bath Temperature on the Electrodeposition Mechanism of Zinc Oxide Film from Zinc Nitrate Solution. Journal of The Electrochemical Society 2006, 153, C551-C556.
[20] Joseph I. Goldstein, Dale E. Newbury, Patrick Echlin, David C. Joy, Charles E. Lyman, Eric Lifshin, Linda Sawyer, Joseph R. Michael. Scanning Electron Microscopy and X-Ray Microanalysis. 3rd ed.; Kluwer Academic/Plenum Publisher: New York, USA, 2003.
[21] S. Hofmann. Springer Series in Surface Science: Auger- and X-Ray Photoelectron Spectroscopy in Materials Science. Springer: Berlin, 2013.
[22] W. E. Swartz. Report X-Ray Photoelectron Spectroscopy. Analytical Chemistry 1973, 45, 788-800.
[23] P. T. Kissinger, W. R. Heineman. Cyclic Voltammetry. Journal of Chemical Education 1983, Vol. 60, 702-706.
[24] C. G. Zoski. Handbook of Electrochemistry. 1st ed.; Elsevier: Amsterdam, Netherlands, 2007.
[25] R. S. Nicholson. Theory and Application of Cyclic Voltammetry for Measurement of Electrode Reaction Kinetics. Analytical Chemistry 1965, 37, 1351-1355.
[26] S. H. DuVall, R. L. McCreery. Control of Catechol and Hydroquinone Electron-Transfer Kinetics on Native and Modified Glassy Carbon Electrodes. Analytical Chemistry 1999, 71, 4594-4602.
[27] A. M. Bond, S. W. Feldberg. Analysis of Simulated Reversible Cyclic Voltammetric Responses for a Charged Redox Species in the Absence of Added Electrolyte. The Journal of Physical Chemistry B 1998, 102, 9966-9974.
[28] G. A. Carriedo. The Use of Cyclic Voltammetry in the Study of the Chemistry of Metal-Carbonyls. Journal of Chemical Education 1988, 65, 1020-21022.
[29] B. J. Sanghavi, A. K Srivastava. Simultaneous Voltammetric Determination of Acetaminophen, Aspirin and Caffeine Using an In Situ Surfactant-Modified Multiwalled Carbon Nanotube Paste Electrode. Electrochimica Acta 2010, 55, 8638-8648.
[30] B. J. Sanghavi, S. M. Mobin, P. Mathur, G. K. Lahiri, A. K Srivastava. Biomimetic Sensor for Certain Catecholamines Employing Copper (II) Complex and Silver Nanoparticle Modified Glassy Carbon Paste Electrode. Biosensors and Bioelectronics 2013, 39, 124-132.
[31] B. J. Sanghavi, A. K Srivastava. Simultaneous Voltammetric Determination of Acetaminophen and Tramadol Using Dowex50wx2 and Gold Nanoparticles Modified Glassy Carbon Paste Electrode. Analytica Chimica Acta 2011, 706, 246-254.
[32] B. J. Sanghavi, A. K Srivastava. Adsorptive Stripping Differential Pulse Voltammetric Determination of Venlafaxine and Desvenlafaxine Employing Nafion-Carbon Nanotube Composite Glassy Carbon Electrode Electrochimica Acta 2011, 56, 4188-4196.
[33] S. M. Mobin, B. J. Sanghavi, A. K Srivastava, P. Mathur, G. K. Lahiri. Biomimetic Sensor for Certain Phenols Employing a Copper (II) Complex. Analytical Chemistry 2010, 82, 5983-5992.
[34] R. M. Wightman. Probing Cellular Chemistry in Biological Systems with Microelectrodes. Science 2006, 17, 1570-1574.
[35] J. A. Hagen, S. N. Kim, B. Bayraktaroglu, K. Leedy, J. L. Chavez, N. Kelley-Loughnane, R. R. Naik, M. O. Stone, Biofunctionalized Zinc Oxide Field Effect Transistors for Selective Sensing of Riboflavin with Current Modulation. Sensors 2011, 11, 6645-6655.
[36] J. A. Hagen, S. N. Kim, B. Bayraktaroglu, N. Kelley-Loughnane, R. R. Naik, M. O. Stone. DNA Aptamer Functionalized Zinc Oxide Field Effect Transistors for Liquid State Selective Sensing of Small Molecules. Proceedings of SPIE 2010, Vol. 7759, 775912-1.
[37] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. St. C. Smart. Resolving Surface Chemical States in XPS Analysis of First Row Transitional Metals, Oxides and Hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science 2010, 257, 887-898.
[38] G. Beamson, D. Briggs. High Resolution XPS of Organic Polymers - The Scienta ESCA300 Database, Wiley Interscience, 1992.
[39] D. J. Miller, M. C. Biesinger, N. S. McIntyre. Interactions of CO2 and CO at Fractional Atmosphere Pressure with Iron and Iron Oxide Surfaces: One Possible Mechanism for Surface Contamination. Surface and Interface Analysis 2002, 33, 299-305.
[40] C. D. Wagner, A. V. Naumkin, A. Kraut-Vass, J. W. Allison, C. J. Powell, J. R. Jr. Rumble. NIST Standard Reference Database 20, Version 3.4, 2003.
[41] J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben. Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, 1992.
[42] M. Das, G. Sumana, R. Nagarajan, B. D. Malhotra. Application of Nanostructured ZnO Films For Electrochemical DNA Biosensor. Thin Solid Films 2010, 519, 1196-1201.
指導教授 陳文逸、林景崎(Wen-Yih Chen Jing-Chie Lin) 審核日期 2014-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明