參考文獻 |
第六章 參考文獻
1. Anderson, J.M. and M.S. Shive, Biodegradation and biocompatibility of PLA and PLGA microspheres. Advanced Drug Delivery Reviews, 2012. 64: p. 72-82.
2. Friess, W., Collagen--biomaterial for drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 1998. 45(2): p. 113-36.
3. Laemmli, U.K., Characterization of DNA condensates induced by poly(ethylene oxide) and polylysine. Proceedings of the National Academy of Sciences, 1975. 72(11): p. 4288-92.
4. Aytar, B.S., M.R. Prausnitz, and D.M. Lynn, Rapid release of plasmid DNA from surfaces coated with polyelectrolyte multilayers promoted by the application of electrochemical potentials. ACS Appl Mater Interfaces, 2012. 4(5): p. 2726-34.
5. Diéguez, L., et al., Electrochemical tuning of the stability of PLL/DNA multilayers. Soft Matter, 2009. 5(12): p. 2415.
6. Guillaume-Gentil, O., et al., Chemically tunable electrochemical dissolution of noncontinuous polyelectrolyte assemblies: an in situ study using ecAFM. ACS Appl Mater Interfaces, 2010. 2(12): p. 3525-31.
7. Boulmedais, F., et al., Controlled Electrodissolution of Polyelectrolyte Multilayers: A Platform Technology Towards the Surface-Initiated Delivery of Drugs. Advanced Functional Materials, 2006. 16(1): p. 63-70.
8. Cho, C., et al., Electric field induced morphological transitions in polyelectrolyte multilayers. ACS Appl Mater Interfaces, 2013. 5(11): p. 4930-6.
9. Guillaume-Gentil, O., et al., Global and local view on the electrochemically induced degradation of polyelectrolyte multilayers: from dissolution to delamination. Soft Matter, 2010. 6(17): p. 4246-4254.
10. Langer, R. and J.P. Vacanti, Tissue engineering. Science, 1993. 260(5110): p. 920-6.
11. Yasuhiko Tabata, M.Y., and Yoshito Ikada, Biodegradable hydrogels for bone regeneration
through growth factor release. Pure and Applied Chemistry, 1998. 70(6): p. p1277-82.
12. Tabata, Y., The importance of drug delivery systems in tissue engineering. Pharmaceutical Science & Technology Today, 2000. 3(3): p. 80-89.
13. Chen, D., R. Sung, and J.S. Bromberg, Gene therapy in transplantation. Transplant Immunology, 2002. 9(2–4): p. 301-314.
14. Volpers, C. and S. Kochanek, Adenoviral vectors for gene transfer and therapy. The Journal of Gene Medicine, 2004. 6 Suppl 1: p. S164-71.
15. Park, T.G., J.H. Jeong, and S.W. Kim, Current status of polymeric gene delivery systems. Advanced Drug Delivery Reviews 2006. 58(4): p. 467-86.
16. P L Felgner, et al., Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proceedings of the National Academy of Sciences, 1987. 84(21): p. 7413-17.
17. Jin, L., et al., Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics, 2014. 4(3): p. 240-55.
18. Decher, G., Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science, 1997. 277(5330): p. 1232-1237.
19. Kotov, N.A., I. Dekany, and J.H. Fendler, Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films. The Journal of Physical Chemistry, 1995. 99(35): p. 13065-13069.
20. Lvov, Y., et al., Ultrathin films of charged polysaccharides assembled alternately with linear polyions. J Biomater Sci Polym Ed, 1998. 9(4): p. 345-55.
21. Müller, M., Orientation of α-Helical Poly(l-lysine) in Consecutively Adsorbed Polyelectrolyte Multilayers on Texturized Silicon Substrates. Biomacromolecules, 2001. 2(1): p. 262-269.
22. Lvov, Y., G. Decher, and G. Sukhorukov, Assembly of thin films by means of successive deposition of alternate layers of DNA and poly(allylamine). Macromolecules, 1993. 26(20): p. 5396-5399.
23. Lvov, Y., K. Ariga, and T. Kunitake, Layer-by-Layer Assembly of Alternate Protein/Polyion Ultrathin Films. Chemistry Letters, 1994. 23(12): p. 2323-2326.
24. Yoo, P.J., et al., Spontaneous assembly of viruses on multilayered polymer surfaces. Nature Materials, 2006. 5(3): p. 234-240.
25. Eugenia Kharlampieva, V. Kozlovskaya, and S.A. Sukhishvili, Layer-by-Layer Hydrogen-Bonded Polymer Films: From Fundamentals to Applications. General & Introductory Materials Scienc, 2009. 21(30): p. 3053-65.
26. Brynda, E. and M. Houska, Multiple Alternating Molecular Layers of Albumin and Heparin on Solid Surfaces. Journal of Colloid and Interface Science, 1996. 183(1): p. 18-25.
27. Anzai, J.-i., et al., Layer-by-Layer Construction of Multilayer Thin Films Composed of Avidin and Biotin-Labeled Poly(amine)s. Langmuir, 1998. 15(1): p. 221-226.
28. Kotov, N.A., Layer-by-layer self-assembly: The contribution of hydrophobic interactions. Nanostructured Materials, 1999. 12(5–8): p. 789-796.
29. Lojou, E. and P. Bianco, Buildup of polyelectrolyte-protein multilayer assemblies on gold electrodes. Role of the hydrophobic effect. Langmuir, 2004. 20(3): p. 748-55.
30. Anzai, J.-i. and N. Nakamura, Preparation of active avidin films by a layer-by-layer deposition of poly(vinyl sulfate) and avidin on a solid surface. Journal of the Chemical Society, Perkin Transactions 2, 1999(11): p. 2413-2414.
31. Anzai, J.-i., T. Hoshi, and N. Nakamura, Construction of Multilayer Thin Films Containing Avidin by a Layer-by-Layer Deposition of Avidin and Poly(anion)s. Langmuir, 2000. 16(15): p. 6306-6311.
32. Boura, C., et al., Endothelial cells grown on thin polyelectrolyte mutlilayered films: an evaluation of a new versatile surface modification. Biomaterials, 2003. 24(20): p. 3521-3530.
33. M. K. Gheith, et al., Single-Walled Carbon Nanotube Polyelectrolyte Multilayers and Freestanding Films as a Biocompatible Platform for Neuroprosthetic Implants. General & Introductory Materials Science, 2005. 17(22): p. 2663-70.
34. Jungwoo Lee , S. Shanbhag, and N.A. Kotov, Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures. J. Mater. Chem.,, 2006. 16: p. 3358-64.
35. Jensen, A.W., et al., Photohydrolysis of Substituted Benzyl Esters in Multilayered Polyelectrolyte Films. Macromolecules, 2004. 37(11): p. 4196-4200.
36. Zhang, J., L.S. Chua, and D.M. Lynn, Multilayered Thin Films that Sustain the Release of Functional DNA under Physiological Conditions. Langmuir, 2004. 20(19): p. 8015-8021.
37. Yamauchi, F., K. Kato, and H. Iwata, Layer-by-layer assembly of poly(ethyleneimine) and plasmid DNA onto transparent indium-tin oxide electrodes for temporally and spatially specific gene transfer. Langmuir, 2005. 21(18): p. 8360-7.
38. Balabushevich, N.G., et al., Loading the multilayer dextran sulfate/protamine microsized capsules with peroxidase. Biomacromolecules, 2003. 4(5): p. 1191-7.
39. Wang, F., et al., Selective electrodissolution of inorganic ions/DNA multilayer film for tunable DNA release. Journal of Materials Chemistry, 2009. 19(2): p. 286-291.
40. Angelatos, A.S., B. Radt, and F. Caruso, Light-Responsive Polyelectrolyte/Gold Nanoparticle Microcapsules. The Journal of Physical Chemistry B, 2005. 109(7): p. 3071-3076.
41. Petrov, A.I., A.V. Gavryushkin, and G.B. Sukhorukov, Effect of Temperature, pH and Shell Thickness on the Rate of Mg2+ and Ox2- Release from Multilayered Polyelectrolyte Shells Deposited onto Microcrystals of Magnesium Oxalate. The Journal of Physical Chemistry B, 2002. 107(3): p. 868-875.
42. Lu, Z., et al., Magnetic Switch of Permeability for Polyelectrolyte Microcapsules Embedded with Co@Au Nanoparticles. Langmuir, 2005. 21(5): p. 2042-2050.
43. Hu, S.-H., et al., Controlled Rupture of Magnetic Polyelectrolyte Microcapsules for Drug Delivery. Langmuir, 2008. 24(20): p. 11811-11818.
44. Van Tassel, P.R., Polyelectrolyte adsorption and layer-by-layer assembly: Electrochemical control. Current Opinion in Colloid & Interface Science, 2012. 17(2): p. 106-113.
45. Aytar, B.S., M.R. Prausnitz, and D.M. Lynn, Rapid Release of Plasmid DNA from Surfaces Coated with Polyelectrolyte Multilayers Promoted by the Application of Electrochemical Potentials
ACS Appl Mater Interfaces, 2012. 4(5): p. 2726-34.
46. Kurrat, R., et al., Instrumental improvements in optical waveguide light mode spectroscopy for the study of biomolecule adsorption. Review of Scientific Instruments, 1997. 68(5): p. 2172-2176.
47. Picart, C., et al., Measurement of film thickness up to several hundreds of nanometers using optical waveguide lightmode spectroscopy. Biosensors and Bioelectronics, 2004. 20(3): p. 553-61.
48. Gabi, M., et al., Influence of applied currents on the viability of cells close
to microelectrodesw . Integr Biol (Camb), 2009. 1(1): p. 108-15.
49. Schlenoff, J.B. and S.T. Dubas, Mechanism of Polyelectrolyte Multilayer Growth: Charge Overcompensation and Distribution. Macromolecules, 2001. 34(3): p. 592-598.
50. Gabi, M., et al., Influence of applied currents on the viability of cells close to microelectrodes. Integr Biol (Camb), 2009. 1(1): p. 108-15.
51. Wang, X., et al., Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res A, 2004. 68(3): p. 411-22.
52. Schmidt, C.E., et al., Stimulation of neurite outgrowth using an electrically conducting polymer. Proceedings of the National Academy of Sciences, 1997. 94(17): p. 8948-53.
53. Wong, J.Y., R. Langer, and D.E. Ingber, Electrically conducting polymers can noninvasively control the shape and growth of mammalian cells. Proceedings of the National Academy of Sciences, 1994. 91(8): p. 3201-4.
54. Boussif, O., et al., A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proceedings of the National Academy of Sciences, 1995. 92(16): p. 7297-301.
55. Jing, G.Y., et al., Surface effects on elastic properties of silver nanowires: Contact atomic-force microscopy. Physical Review B, 2006. 73(23): p. 235409.
56. Poon, C.Y. and B. Bhushan, Comparison of surface roughness measurements by stylus profiler, AFM and non-contact optical profiler. Wear, 1995. 190(1): p. 76-88.
57. Zhong, Q., et al., Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy. Surface Science, 1993. 290(1–2): p. L688-L692.
58. Vázquez, E., et al., Construction of Hydrolytically-Degradable Thin Films via Layer-by-Layer Deposition of Degradable Polyelectrolytes. Journal of the American Chemical Society, 2002. 124(47): p. 13992-13993.
59. Jewell, C.M., et al., Multilayered polyelectrolyte films promote the direct and localized delivery of DNA to cells. Journal of Controlled Release 2005. 106(1-2): p. 214-23.
60. Benjaminsen, R.V., et al., The possible "proton sponge " effect of polyethylenimine (PEI) does not include change in lysosomal pH. Molecular Therapy, 2013. 21(1): p. 149-57. |