參考文獻 |
[1] 吳財福, 陳裕愷, 張健軒, “太陽光電能供電與照明系統綜論,” 全華圖書,
(2007) 1-2.
[2] German Advisory Council on Global Change WBGU Berlin 2003 www.wbgu.de;
Renewable Energy Policy Network for the 21st Century, Renewables, Global Status
Report 2006
[3] H. Tsubomura and H. Kobayashi, “Solar Cells,” Crit. Rev. Solid State Mater. Sci.
18 (1993) 261-326.
[4] A. A. Lacis and J. E. Hansen, “A Parameterization for the Absorption of Solar
Radiation in the Earth′s Atmosphere,” J. Astronaut.Sci., 31 (1974) 118-133.
[5] 陳頤承, 黃志仁, 吳建樹, 翁得期, 陳麒麟, “矽薄膜太陽能電池技術,” 電子
月刊, 145 (2007) 149-164.
[6] http://technews.tw/2014/04/29/more-solar-energy-in-germany/
[7] B. Lim, S. Hermann, K. Bothe, J. Schmidt, and R. Brendel, “Solar Cells on Low-
Resistivity Boron-Doped Czochralski-Grown Silicon with Stabilized Efficiencies
of 20%,” Appl. Phys. Letter. 93 (2008) 162102~3
[8] U. Gangopadhyay, S. K. Dhungel, P. K. Basu, S. K. Dutta, H. Saha, and J. Yi,
“Comparative Study of Different Approaches of Multicrystalline Silicon Texturing
for Solar Cell Fabrication,” Solar Energy Materials and Solar cells 91 (2007)
285-289.
[9] A. Gordijn, J. K. Rath, and R. E. I. Schropp, “High-Efficiency μc-Si Solar Cells
Made by Very High-Frequency Plasma-Enhanced Chemical Vapor Deposition,”
Prog. Photovoltaics Res. Appl. 14 (2006) 305-311.
[10] Schultz, S. W. Glunz, G. A. Leimenstoll, H. Lautenschlager, and J. C.
Goldschmidt, in Proc. 19th Europ. Photovolt. Solar Energy Conf., in: W.
Hoffmann, H. A. Ossenbrink, P. Helm, H. Ehmann (Eds.), Stephens and
Accociates, Bedfore UK, in press.
[11] H. Keppner, J. Meier, P. Torres, D. Fischer, and A. Shah, “Microcrystalline
Silicon and Micromorph Tandem Solar Cells,” Appl. Phys. A 69 (1999) 169-177.
[12] B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-
sensitized colloidal TiO2 films,” Nature 353 (1991) 737-739.
[13] C. Y. Chen, M. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. H. Ngoc-le, J.
D. Decoppet, J. H. Tsai, C. Grätzel, C. G. Wu, S. M. Zakeeruddin, and M.
Grätzel, “High-Efficiency Light-Harvesting Ruthenium Sensitizer for Thin Film
Dye-Senitized Solar Cells, ”Acs nano 3 (2009) 3103-3109.
[14] 邱秋燕、廖曰淳/工研院材化所, 郭豐綱/國立清華大學, “低成本銅銦鎵硒
(CIGS)太陽電池技術發展”
[15] V. M. Andreev, V. A. Grikhiles, and V. D. Rumyanzev, “Photoelectric conversion
of sun concentrated radiation,” Leningrand, Nauka, 1989.
[16] N. H. Karam, R. R. King, B. T. Cavicchi, D. D. Krut, J. H. Ermer, M. Haddad, L.
Cai, D. E. Joslin, M. Takahashi, J. W. Eldredge, W. T. Nishikawa, D. R.
Lillington, B. M. Keyes, and R. K. Ahrenkiel, “Development and
Characterization of High-Efficiency Ga0.5In0.5P/GaAs/Ge Dual- and Triple-
junction Solar cells,” IEEE Trans Elec. Devices 46 (1999) 2116-25.
[17] Phys. Status Solidi A 208, No. 1, 109–113 (2011) / DOI 10.1002/pssa.201026164
[18] H. Zhu, J. Hüpkes, E. Bunte, J. Owen, and S.M. Huang, “Novel etching method
on high rate ZnO:Al thin films reactively sputtered from dual tube metallic
targets for silicon-based solar cells,” Solar Energy Materials & Solar Cells 95
(2011) 964-8.
[19] W. L. Lu, K. C. Huang, C. H. Yeh, C. I. Hung, and M. P. Houng, “Investigation
of textured Al-doped ZnO thin films using chemical wet-etching methods.”
Materials Chemistry and Physics 127 (2011) 358-63.
[20] K. Ip, M. E. Overberg, K. W. Baik, R. G. Wilson, S. O. Kucheyev, J. S.
Williams, C. Jagadish, F. Ren, Y. W. Heo, D. P. Norton, J. M. Zavada, and S. J.
Pearton, “ICP Dry Etching of ZnO and Effects of Hydrogen,” Solid State
Electron. 47 (2003) 2289-2294.
[21] M.A. Green, J. Zhao, 1990, “24% efficiency silicon solar cells”, Appl. Phys,
vol. 57, pp. 602-604
[22] Wang Xiaona, Liu Aimin, Cao Yingli, Zhao Zengchao, Sang Yongchang 15
(Pysical and Opto-electronical School,Dalian University of Technology,
LiaoNing DaLian 116023)
[23] Xiao-She Hua, Yi-Jie Zhang, Hao-Wei Wang, “The effect of texture unit shape on
silicon surface on the absorption properties”, DOI: 10.1016/j.solmat.2009.09.011
[24] 丁嘉仁、許沁如、聶雅玉、張哲瑋(2006)。次波長結構抗反射膜片發展
現況。機械工業雜誌,282, 72。
[25] Yun-Ju Lee,* Douglas S. Ruby, David W. Peters, Bonnie B. McKenzie, and Julia
W. P. Hsu, “ZnO Nanostructures as Efficient Antireflection Layers in Solar Cells”,
NANO LETTERS 2008 Vol. 8, No. 5 1501-1505
[26] J.W. Leem, D.H. Joo, J.S. Yun, “Biomimetic parabola-shaped AZO
subwavelength grating structures for efficient antireflection of Si-based solar
cells”, Solar Energy Materials & Solar Cells 95 (2011) 2221–2227
[27] S. Iijima, “Helical microtubules of graphitic carbon,” Nature 354 (1991) 56-8.
[28] A. Lecestre, E. Dubois, A. Villaret, T. Skotnicki, P. Coronel, G. Patriarche, C.
Maurice, “Confined VLS growth and structural characterization of silicon
nanoribbons,” Microelectron. Eng. 87 (2010) 1522-1526.
[29] Zhao Wu, Yunwang Zhang, and Kai Du, “A simple and efficient combined AC–
DC Electrodeposition method for fabrication of highly ordered Au nanowires in
AAO template,” Appl. Surf. Sci. 265 (2013) 149-156.
[30] J. Elias, I. Utke, S. Yoon, M. Bechelany, A. Weidenkaff, J.Michler, and L.
Philippe, “Electrochemical growth of ZnO nanowires on atomic layer deposition
coated polystyrene sphere templates,” Electrochimica. Acta. xxx (2013) xxx-xxx.
[31] P. X. Gao and Z. L. Wang, “Substrate Atomic-Termination-Induced Anisotropic
Growth of ZnO Nanowires/Nanorods by the VLS process,” J. Phys. Chem. B
108 (2004) 7534-7.
[32] S. Y. Li, C. Y. Lee, and T. Y. Tseng, “Copper-Catalyzed ZnO Nanowires on
Silicon 100) Grown by Vapor-Liquid-Solid Process,” J. Cryst. Growth 247 (2003)
357-362.
[33] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a
simple way of thermal evaporation”, 2002 American Institute of Physics
[34] Seung Chul Lyua, Ye Zhanga, Hyun Ruhb, Hwack-Joo Leeb, Hyun-Wook
Shimc, Eun-Kyung Suhc, Cheol Jin Leea, “Low temperature growth and
photoluminescence of well-aligned zinc oxide nanowires”, DOI: 10.1016/S0009-
2614(02)01145-4
[35] S.N. Bai, H.H. Tsai, T.Y. Tseng, “Structural and optical properties of Al-doped
ZnO nanowires synthesized by hydrothermal method”
[36] Chih-Hsiung Hsu and Dong-Hwang Chen, “Synthesis and conductivity
enhancement of Al-doped ZnO nanorod array thin films”
[37] Jijun Qiu, Xiaomin Li, Weizhen He, Se-Jeong Park, Hyung-Kook Kim, Yoon-Hwae Hwang, Jae-Ho Lee, and Yang-Do Kim, “The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method,” Nanotechnology. 20 (2009) 155603.
[38] Jing-Hua Tian, Jie Hu, Si-Si Li, Fan Zhang, Jun Liu, Jian Shi, Xin Li, Zhong-Qun Tian, and Yong Chen, “Improved seedless hydrothermal synthesis of dense and ultralong ZnO nanowires,” Nanotechnology. 22 (2011) 245601.
[39] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, “Influence of pH, Precursor Concentration,Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method,” Nanomaterials. 10 (2011) 269692.
[40] Zhiqing Zhang and Jin Mu, “Hydrothermal synthesis of ZnO nanobundles
controlled by PEO–PPO–PEO block copolymers,” J. Colloid Interf. Sci. 307
(2007) 79-82.
[41] Renee B. Peterson , Clark L. Fields , and Brian A. Gregg, “Epitaxial Chemical
Deposition of ZnO Nanocolumns from NaOH Solutions,” Langmuir. 20 (2004)
5114-5118.
[42] Zhengzhi Zhou and Yulin Deng, “Kinetics Study of ZnO Nanorod Growth in Solution,” J. Phys. Chem. C 113 (2009) 19853-19858.
[43] Marcus Lippold, Uwe Böhme, Christoph Gondek, Martin Kronstein, Sebastian
Patzig-Klein, Martin Weser, and Edwin Kroke, “Etching Silicon with HF–
HNO3–H2SO4/H2O Mixtures – Unprecedented Formation of Trifluorosilane,
Hexafluorodisiloxane, and Si–F Surface Groups”
[44] Jijun Qiu, Xiaomin Li, Weizhen He, Se-Jeong Park, Hyung-Kook Kim, Yoon-Hwae Hwang, Jae-Ho Lee, and Yang-Do Kim, “The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method,” Nanotechnology. 20 (2009) 155603.
[45] G. Amin, M. H. Asif, A. Zainelabdin, S. Zaman, O. Nur, and M. Willander, “Influence of pH, Precursor Concentration,Growth Time, and Temperature on the Morphology of ZnO Nanostructures Grown by the Hydrothermal Method,” Nanomaterials. 10 (2011) 269692.
[46] J. Wanger, “Photoluminescense and Excitation Spectroscopy in Heavily Doped
N- and P-Type Silicon,” Phys. Rev. B 29 (1984) 2002-2009.
[47] Chaehwan JEONG, Ho-Sung KIM, Duck-Rye CHANG, and Koichi KAMISAKO1,“Effect on Al2O3 Doping Concentration of RF Magnetron Sputtered ZnO:Al Films for Solar Cell Applications”, Japanese Journal of Applied Physics Vol. 47, No. 7, 2008, pp. 5656–5658
[48] Yen-Chun Chao , Cheng-Ying Chen , Chin-An Lin , Yu-An Dai and Jr-Hau He *,“Antireflection effect of ZnO nanorod arrays”, J. Mater. Chem.,2010, 20, 8134-8138
[49] C. Chandrinou, N. Boukos, C. Stogios, A. Travlos,“ PL study of oxygen defect formation in ZnO nanorods”, Microelectronics Journal 40 (2009) 296–298
[50] D. Dimova-Malinovska, N. Tzenov, M. Tzolov and L.
Vassilev,Materials Science and Engineering ,Vol.52, p.59, 1998.
[51] Tetsuay Yamamoto and Hiroshi Katayama-Yoshida, J.
CrystalGrowth , Vol.214, p.552 ,2002.
[52] D. H. Zhang, T. L. Yang, Q. P. Wang and D. J. Zhang, Materials
Chemistry and Physics, Vol. 68, p.233, 2001.
[53] A. V. Singh and R. M. Mehra, J. Appl. Phys, Vol. 90, p.566,2001.
[54] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire Ultraviolet Photodetectors and Optical Switches,” Adv. Mater. 14 (2002) 158-60.
[55] D. R. Vij and N. Singh, “Luminescence and Related of Ⅱ-Ⅳ Semiconductors,” Nova Science Publishers, N. Y. ,1998.
[56] V. Srikant and D. R. Clarke, “Optical Absorption Edge of ZnO Thin Films: The Effect of Substrate,” J. Appl. Phys. 81 (1997) 6357-6364.
[57] X. Chen, W. Guan, G. Fang, and X. Z. Zhao, “Influence of Substrate Temperature and Post-Treatment on the Properties of ZnO:Al Thin Films Prepared by Pulsed Laser Deposition,” Appl. Surf. Sci. 252 (2005) 1561-1567.
[58] S. S. Lin, J. L. Huang, and P. Šajgalik, “The Properties of Heavily Al-Doped ZnO Films before and after Annealing in the Different Atmosphere,” Surf. Coat. Technol. 185 (2004) 254-263.
[59] C. Fournier, O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, F. Williams, A. K. Pradhan, “Effects of Substrate Temperature on the Optical and Electrical Properties of Al : ZnO Films, Semicond,” Sci. Technol. 23 (2008) 085019.
[60] D.Y. Song, “Effects of RF Power on Surface-Morphological, Structural and Electrical Properties of Aluminium-Doped Zinc Oxide Films by Magnetron Sputtering, ” Appl. Surf. Sci. 254 (2008) 4171-4178.
[61] J. G. Lu, S. Fujita, T. Kawaharamura, H. Nishinaka, Y. Kamada, T. Ohshima, Z. Z. Ye, Y. J. Zeng, Y. Z. Zhang, L. P. Zhu, H. P. He, B. H. Zhao, “Carrier Concentration Dependence of Band Gap Shift in N-Type ZnO : Al Films, ” J. Appl. Phys. 101 (2007) 083705.
[62] Z. L. Pei, C. Sun, M. H. Tan, J. Q. Xiao, D. H. Guan, R. F. Huang and L. S. Wen, J. Appl. Phys, Vol.90,p.3432,2001.
[63] Zhengzhi Zhou and Yulin Deng, “Kinetics Study of ZnO Nanorod Growth in Solution,” J. Phys. Chem. C 113 (2009) 19853-19858.
[64] J. S. Rowlinson and B. Widom, “Molecular Theory of Capillarity,” OXFORD Science Publications, 66, 816 (1982).
[65] R. N. Wenzel, “Surface Roughness and Contact Angle,” J. Phys. Chem. 53 (1949) 1466-1467.
[66] A. B. D. Cassie and S. Baxter, “Contact Angle,” Trans. Faraday Soc. 40 (1944) 546.
[67] D. Quéré, “Rough Ideas on Wetting,” Physica A 313 (2002) 32-46.
[68] Jun Zhang, YanruLiu, Zhiyang Wei, and Junyan Zhang, “Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air,” Appl. Surf. Sci., 265 (2013) 363-368.
[69] Sijing Xie, Yan Zhao, and Yijian Jiang, “Laser-induced hydrophobicity on single crystal zinc oxide surface,” Appl. Surf. Sci. 263 (2012) 405-409
[70] H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, “Nanowire Ultraviolet
Photodetectors and Optical Switches,” Adv. Mater. 14 (2002) 158-60. |