博碩士論文 101324004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:3.14.132.178
姓名 邊夢涵(Meng-han Bian)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究
★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究
★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究
★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究★ 尖針狀鈷矽化物/矽單晶異質奈米線陣列結構之製備及其性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用陽極氧化鋁奈米模板結合電化學沉積法,成功地製備出長度可調控的一維鈷金屬奈米線與奈米管,並由實驗結果觀察,奈米管管壁厚度有一梯度變化。經由場發射性質量測可得知鈷金屬奈米線與奈米管,其啟動電場分別為1.75V/μm與2.43V/μm。除此之外,我們發現鈷金屬奈米線的場增強因子(β)的數值比鈷金屬奈米管大,推測造成此現象的原因為遮蔽效應的影響。
本研究將鈷金屬奈米線分別在350℃與450℃的氧氣氛圍下進行不同熱氧化時間的處理,會因為Kirkendall effect效應製備Co3O4之串珠狀奈米管,並且利用TEM對鈷金屬氧化過程中的形貌、晶體結構與生成機制進行有系統性的研究,可知Co金屬會先轉變為CoO最終氧化成Co3O4,再利用HE-TEM觀察到CoO生成與靠近Co之處,而Co3O4位在CoO之外層。
本研究利用熱氧化法製備大面積Co3O4,並推測其成長機制為尖端生長,在氧化過程中釋放氧化層內部的應力,自然形成氧化鈷奈米線。接著以水滴接觸角量測其表面親疏水性質,並發現可以藉由真空退火、置於真空環境下以及置於一般大氣環境下,讓其表面轉變為疏水性質,並推測其機制與表面氧原子之脫附有關。
摘要(英) In this study, we have demonstrated that length-tunable copper nanowires and nanotubes were successfully produced by using the anodic aluminum oxide (AAO) nanotemplate combined with the electrodeposition process. As the result, the wall thickness of nano tube with a gradient variations. Field emission measurements showed daturn-on fields of Co nanowire and nanotube are 1.75 V/μm and 2.43 V/μm, respectively. Moreover, the field enhancement factor(β) of Co nanowires was found to be larger than that of Co nanotubes, the result might be attributed to the so-called screen effect.
In this study, the cobalt nanowires were treated with different thermal oxidation time under oxygen atmosphere at 450℃ and 350℃.Finally, it became bead-like nanotube with kirkendall effect. We study the morphology、crystal structure and formation mechanism of Co wire during thermal oxidation with TEM. In this observation, we can tell that the sequence of the appeared cobalt oxide phase is from CoO to Co3O4, and the CoO generated at the close to the Co , and the site of Co3O4 is outside the CoO.
In this work , we fabricated the large-area Co3O4 nanowire by air oxidation of Co film .The possible mechanisms of the growth of nanowires are discussed in the context of the stress relaxation from the oxidation layer. In addition, the surface-wetting properties of the Co3O4 nanowires were evaluated by water contact angle measurements. We found that the wetting behaviors changed from hydrophilic to hydrophobic by vacuum annealing 、 placed under a vacuum environment or atmospheric environment. We speculate that this phenomenon is related to the desorption of surface oxygen atoms.
關鍵字(中) ★ 鈷金屬
★ 鈷金屬氧化物
★ 陽極氧化鋁模板
關鍵字(英)
論文目次 第一章 簡介 1
1-1 前言 1
1-2 奈米材料 2
1-3 鈷金屬奈米材料………………………………………………………………………..3
1-4 鈷金屬氧化物奈米材料………………………………………………………………...4
1-5 奈米模板法……………………………………………………………………………...6
1-6 陽極氧化鋁奈米模板 …………………………………………………………………..7
1-6-1 陽極氧化鋁成長機制………...…………………………….…………………..7
1-6-2 陽極氧化鋁規則化孔洞製程………………………….…..…………………. 8
1-7奈米模板製備一維奈米結構………………………………………………………….......9
1-8 場發射電極原件…………………………………………………………………….......11
1-8-1 場發射理論……………..………………………………………..……………11
1-8-2 場發射應用……………………..……………………………………………..13
1-9 研究動機及目標………………………………………………………………………...14
第二章 實驗步驟及儀器設備………………………………………………………..........15
2-1 陽極氧化鋁模板法製備一維鈷金屬奈米結構………………………………………...15
2-1-1 陽極氧化鋁模板之製程……………………………………...………….……15
2-1-2 電化學沉積法製備金屬奈米線/管陣列………...……………………………16
2-2 一維氧化鈷奈米結構製備…………………………………………………………….17
2-2-1一維氧化鈷奈米結構製備…………………………………………..............17
2-2-2氧化矽膜之銅網之製備……………………………………………………..17
2-3 大面積之氧化鈷奈米結構之製備……………………………………………………...18
2-3-1 基材使用之前處理…………………………………………………………....18
2-3-2 自組裝奈米球模板之製備……………………………………………………19
2-3-3 金屬鈷薄膜蒸鍍……………………...……………………………………....19
2-3-4 奈米球舉離及熱退火處理……....................………………………………....20
2-4實驗設備………………………………………………………………………………….20
2-4-1 蒸鍍系統(Evaporation System) ……………………....………………………20
2-4-2 氧化鋁模板製備系統………………………………....………………………20
2-4-3 電沉積系統……………………………………………………………………20
2-4-4 退火爐系統……………………………………………………………………21
2-5 儀器分析實驗…………………………………………………………………………...21
2-5-1 掃描式電子顯微鏡……………………………………………………………21
2-5-2 穿透式電子顯微鏡…………………………………………………………....21
2-5-3 高分辨穿透式電子顯微鏡(HR-TEM) ………....…………………………….22
2-5-4 真空場發射特性量測系統……………....……………………………………22
2-5-5 影像式接觸角量測儀…………………………………………………………22
第三章 結果與討論………………………………………………………………………….23
3-1 陽極氧化鋁奈米模板結合電化學沉積法製備金屬奈米線/管………………………..23
3-1-1 鈷金屬奈米線/奈米管之結構分析…………………………………………...23
3-1-2 鈷金屬奈米管成長機制探討………………………………………………....25
3-2 鈷金屬奈米線/管之場發射性質量測………………………………………………......26
3-3 一維鈷金屬奈米結構之氧化機制……………………………………………………...27
3-3-1 陽極氧化鋁模板及鈷金屬奈米線形貌及結構分析…………….....…….....28
3-3-2 低溫熱氧化鈷金屬奈米線…………………………………………………..29
3-3-3高溫熱氧化鈷金屬奈米線……………………………………………………31
3-3-4 鈷金屬奈米線氧化機制探討………………………………………………..32
3-4 以熱氧化法製備氧化鈷奈米線及其成長機制探討……………...……………………34
3-4-1以熱氧化法製備大面積氧化鈷奈米線………………………………………..34
3-4-2氧化鈷奈米線成長機制探討…………………………………………………..36
3-4-3大面積氧化鈷奈米線之親疏水性質…………………………………………..36
第四章 結論與未來展望…………………………………………………………………….39
4-1 結論……………………………………………………………………………………...39
4-2 未來展望………………………………………………………………………………...40
參考文獻……………………………………………………………………………………...41
圖目錄………………………………………………………………………………………...51
參考文獻 [1] Z. Yao, Y. W. Lu, and S. G. Kandlikar, “Direct growth of copper nanowires on a substrate for boiling applications,” Micro. Nano. Lett. 6 (2011) 563-566.
[2] W. Barthlott, and C. Neinhuis, “Purity of the scared lotus, or escape from contamination in biological surfaces,” Planta 202 (1997) 1-8.
[3] L. Simon, L Ann, L. Goran, and W. Lars, “Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose,” J. Mater. Chem. A 1 (2013) 4671-4677.
[4] Pratap M. Rao, Lili Cai, Chong Liu, In Sun Cho, Chi Hwan Lee, Jeffrey M. Weisse,
Peidong Yang,and Xiaolin Zheng, “Simultaneously Efficient Light Absorption and Charge Separation in WO3/BiVO4 Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation,” Nano Lett. 14 (2014) 1099−1105
[5] R. Rurali, M. Palummo, and X. Cartoixà1, “Convergence Study of Neutral and Charged Defect Formation Energies in Si Nanowires,” Physical Review B 81 (2010) 235304 1-6.
[6] H. W. Shim, D. K. Lee, I. S. Cho, K. S. Hong, and D. W. Kim, “Facile hydrothermal synthesis of porous TiO2 nanowire electrodes with high-rate capability for Li ion batteries,” Nanotechnology 21 (2010) 255706 1-9.
[7] Wei Wang,Yibing Xie, Yong Wang,Hongxiu Du, Chi Xia, Fang Ti, “Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays,” Microchim Acta 181 (2014) 381–387.
[8] Dawei Gong, Craig A. Grimes,a) and Oomman K. Varghese ,Wenchong Hu, R.S. Singh, and Zhi Chen, Elizabeth C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation,“ J. Mater. Res. 16 (2001) 12.
[9] Chia-Yang Tsai, Che-Yao Wu, Kai-Hau Chang, Po-Tsung Lee, “ Slab Thickness Dependence of Localized Surface Plasmon Resonance Behavior in Gold Nanorings,” Plasmonics 8 (2013) 1011–1016.
[10] J. Aizpurua,1 P. Hanarp,2 D. S. Sutherland,2 M. Ka¨ll,2 Garnett W. Bryant,1 and F. J. Garcı´a de Abajo3 “Optical Properties of Gold Nanorings,” Phy. Rev. Lett. 90 (2003) 5.
[11] O. KARAAGAC, H. KOCKARa, M. ALPERb, “Electrodeposited cobalt films: The effect of deposition potentials on the film properties,”
J. Optel. Adv. Mater. 15 (2013)1412 – 1416.
[12] Shigeo Horiuchi, Takuya Gotou, Masahiro Fujiwara, Ryuji Sotoaka, Masukazu Hirata, Koji Kimoto1, Toru Asaka1, Tadahiro Yokosawa1, Yoshio Matsui1, Kenji Watanabe1 and Masami Sekita, “Carbon Nanofilm with a New Structure and Property,” Jpn. J. Appl. Phys. 42 (2003) L1073.
[13] K. V. Klitzing, G. Dorda, and Pepper, ”New method for high-accuracy determination of the fine-structure constant base on quantized hall resistance,” Physical Review Letters 45 (1980) 494-497.
[14] 白春禮,“Nanometer scale science and technology,”凡異出版社.
[15] H. Sepehri-Amin, T. Ohkubo, and K. Hono, “The mechanism of coercivity enhancement by the grain boundary diffusion process of Nd–Fe–B sintered magnets,” Acta. Mater. 61 (2013) 1982–1990.
[16] B. Ghazaleh, H. Mansor, S. Nayereh, I. Ismayadi, V. Parisa, N. Manizheh, N. Maryam, and K. Samikannu, “High coercivity sized controlled cobalt-gold core-shell nano-crystals prepared by reverse microemulsion,” MRB 13 (2013) 1-22.
[17] L. Tsakalakos, J. Balch, J. Fronheiser, and B. A. Korevaar General Electric-Global Research Center, Niskayuna,O. Sulima and J. Rand,“Silicon nanowire solar cells,”Appl. Phys. letters 91 (2007) 233117.
[18] F. Pavia and W. A. Curtin, “Molecular modeling of cracks at interfaces in nanoceramic composites,” J. Mech. Phys. Solids 13 (2012) 1-34.
[19] Ji Ung Choa, Jun-Hua Wub, Ji Hyun Mina, Seung Pil Koa, Joon Young Soha, Qun Xian Liub,Young Keun Kima, “Control of magnetic anisotropy of Co nanowires, ” Journal of Magnetism and Magnetic Materials 303 (2006) e281–e285.
[20] A. Ramazani, M. Almasi Kashi, M. Alikhani, S. Erfanifam, “Fabrication of high aspect ratio Co nanowires with controlled magnetization direction using ac and pulse electrodeposition, ” Materials Chemistry and Physics 112 (2008) 285–289.
[21] henxing Song , Yujuan Xie , Suwei Yao , Hongzhi Wang, “Field emission properties of electrodeposited cobalt nanowire arrays grown in anodic aluminum oxide, ” Materials Letters 65 (2011) 44–45.
[22] Laurent Vila, Pascal Vincent, Laurence Dauginet-De Pra, Gilles Pirio, Eric Minoux, Laurent Gangloff, Sophie Demoustier-Champagne, Nicolas Sarazin, Etienne Ferain, Roger Legras, Luc Piraux, and Pierre Legagneux, “Growth and Field-Emission Properties of Vertically Aligned Cobalt Nanowire Arrays, ” Nano Letters 4 (2004) 521-524.
[23] J. Wo¨llenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Bo¨ttner, I. Eisele, “Cobalt oxide based gas sensors on silicon substrate for operation at low temperatures, ” Sensors and Actuators B 93 (2003) 442–448.
[24] Kwon-Il Choia, Hae-Ryong Kim, Kang-Min Kim, Dawei Liu, Guozhong Caob, Jong-Heun Lee, “C2H5OH sensing characteristics of various Co3O4 nanostructures prepared by solvothermal reaction, ” Sensors and Actuators B 146 (2010) 183–189.
[25] Qi Xiao, Jiang Zhang, Chong Xiao, Xiaoke Tan, “Photocatalytic degradation of methylene blue over Co3O4/Bi2WO6 composite under visible light irradiation, ” Catalysis Communications 9 (2008) 6.
[26] Shijing Wang, Boping Zhang, “SPR propelled visible-active photocatalysis on Au-dispersed Co3O4 films,” Applied Catalysis A: General 467 (2013) 585–592
[27] Yong Peng, Hao-Li Zhang, Shan-Lin Pan and Hu-Lin Li, “Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film,” J. Appl.Phys. 87 (2000) 7405
[28] H. Zeng, M. Zheng, R. Skomski, D. J. Sellmyer, Y. Liu, L. Menon and S. Bandyopadhyay, “Magnetic properties of self-assembled Co nanowires of varying length and diameter,”J. Appl. Phys. 87 (2000) 4718
[29] G. J. Strijkers, J. H. J. Dalderop, M. A. A. Broeksteeg, H. J. M. Swagten and W. J. M. de Jonge, “Structure and magnetization of arrays of electrodeposited Co wires in anodic alumina,” J. Appl. Phys. 86 (1999) 5141
[30] V.M Fedosyuk, O.I Kasyutich, W Schwarzacher, “Granular AgCo and AgCuCo nanowires,” Journal of Magnetism and Magnetic Materials 198 (1999) 246
[31] D J Sellmyer, M Zheng and R Skomski , “ Magnetism of Fe, Co and Ni nanowires in self-assembled arrays,” J. Phys. Condens. Matter 13 (2001) R433–R460
[32] Zhang, J., G. A. Jones, “Monocrystalline hexagonal-close-packed and polycrystalline face-centered-cubic Co nanowire arrays fabricated by pulse dc electrodeposition,” Journal of Applied Physics 101(5) (2007) 054310.
[33] Thurn-Albrecht, “Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates,” Science 290 (2000)2126-2129.
[34] Ye, Z., H. Liu, “Thickness dependence of the microstructures and magnetic properties of electroplated Co nanowires,” Nanotechnology 20 (2009)045704
[35] Xiaohu Huang, Liang Li, Xuan Luo, Xiaoguang Zhu, and Guanghai Li, “Orientation-Controlled Synthesis and Ferromagnetism of Single Crystalline Co Nanowire Arrays,” J. Phys. Chem. C (112) 20081468-1472
[36] Bethune D.S., Kiang C.H., deVries M.S., Gorman G., Savoy R., Vazquez J., Bayers R., “Cobalt-catalysed growth of carbon nanotubes with single atomic layers,” Nature 363 (1993) 605
[37] Brooke L. Small, Maurice Brookhart and Alison M. A. Bennett, “Highly Active Iron and Cobalt Catalysts for the Polymerization of Ethylene,” J. Am. Chem. Soc. 120 (1998) 4049-4050
[38] Alexandra Imre, Edit Varga, Lili Ji, Bojan Ilic, Vitali Metlushko, György Csaba, Alexei Orlov, “ Flux-Closure Magnetic States in Triangular Cobalt Ring Elements,” Ieee Transactions on Magnetic 42 (2006) 11
[39] G. Leendert Bezemer, Johannes H. Bitter, Herman P. C. E. Kuipers, Heiko Oosterbeek, Johannes E. Holewijn, Xiaoding Xu, Freek Kapteijn, “Cobalt Particle Size Effects in the Fischer-Tropsch Reaction Studied with Carbon Nanofiber Supported Catalysts,” J. Am. Chem. Soc. 128 (2006) 3956
[40] W. L. Liu, S. H. Tsai, and W. J. Chen, J. “Growth Kinetics of Electroless Cobalt Deposition by TEM”, Electrochem. Soc. 151 (2004) C680-C683.
[41] M. Brands, C. Hassel, A. Carl, and G. Dumpich , “Electron-electron interaction in quasi-one-dimensional cobalt nanowires capped with platinum: Low-temperature magnetoresistance measurements,” Phtsical Review B 74 (2006) 033406
[42] Ye, Z., H. Liu, “Thickness dependence of the microstructures and magnetic properties of electroplated Co nanowires,” Nanotechnology 20 (2009)045704
[43] K. Nielsch, F. J. Castaño, S. Matthias, W. Lee and C. A. Ross, “Synthesis of Cobalt/Polymer Multilayer Nanotubes,” Advanced Engineering Materials 7 (2005) 217
[44] Hyun-Jeong Nam, Takeshi Sasaki, and Naoto Koshizaki, “Optical CO Gas Sensor Using a Cobalt Oxide Thin Film Prepared by Pulsed LaserDeposition under Various Argon Pressures,” J. Phys. Chem. B. 110 (2006) 23081-23084
[45] Xiaowei Xie, Yong Li, Zhi-Quan Liu, Masatake Haruta and Wenjie Shen, “Low-temperature oxidation of CO catalysed by Co3O4 nanorods,” NATURE 458 (2009) 9
[46] Xiaowei Xie, Yong Li, Zhi-Quan Liu, Masatake Haruta, Wenjie Shen, “Control of magnetic anisotropy of Co nanowires,” Journal of Magnetism and Magnetic Materials 303 (2006) e281-e285.
[47] L. Fu,Z. Liu, Y. Liu, B. Han,P. Hu,L. Cao,D. Zhu, “Beaded Cobalt Oxide Nanoparticles along Carbon Nanotubes: Towards More Highly Integrated Electronic Devices,” Advanced Materials 17 (2005) 217–22
[48] W. Y. Li, L. N. Xu,J. Chen, “Co3O4 Nanomaterials in Lithium-Ion Batteries and Gas Sensors,” Advanced Functional Materials 15 (2005) 851–857
[49] Cheng, Hua Lu, Zhou Guang Deng, Jian Qiu Chung, C. Y. Zhang, Kaili Li, Yang Yang, “A facile method to improve the high rate capability of Co3O4 nanowire array electrodes,” Nano Research 3 (2010) 895-901.
[50] Gasparotto, Alberto Barreca, Davide Bekermann, Daniela Devi, Anjana Fischer, Roland A. Fornasiero, Paolo Gombac, Valentina Lebedev, Oleg I. Maccato, Chiara Montini, Tiziano Van Tendeloo, Gustaaf Tondello, Eugenio, “F-Doped Co3O4Photocatalysts for Sustainable H2Generation from Water/Ethanol,” Journal of the American Chemical Society 133 (2011) 19362-19365.
[51] Wang, S. and B. Zhang, “SPR propelled visible-active photocatalysis on Au dispersed Co3O4 films,” Applied Catalysis A: General 467 (2013) 585-592.
[52] Xin-hui Xia, Jiang-ping Tu, Yong-jin Mai, Xiu-li Wang, Chang-dong Gu and Xin-bing Zhao, “Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance,” Journal of Materials Chemistry 21 (2011). 9319.
[53] A. K. Srivastava, S. Madhavi, and R. V. Ramanujan, “A novel method to synthesize cobalt oxide (Co3O4) nanowires from cobalt (Co) nanobowls,” Phys Status Solidi A 207 (2010) 963–966
[54] Binni Varghese, Teo Choon Hoong, Zhu Yanwu, Mogalahalli V. Reddy, Bobba V. R. Chowdari, Andrew Thye Shen Wee, Tan B. C. Vincent, Chwee Teck Lim, and Chorng-Haur Sow, “Co3O4 Nanostructures with Different Morphologies and their Field-Emission Properties,” Adv. Funct. Mater. 17 (2007) 1932–1939
[55] Liang He, Zhengcao Li and Zhengjun Zhang, “Rapid, low-temperature synthesis of single-crystalline Co3O4 nanorods on silicon substrates on a large scale,”Nanotechnology 19 (2008) 155606
[56] Zhiqiang Qiao, Daguo Xu, Fude Nie, Guangcheng Yang, and Kaili Zhang ,“ Controlled facile synthesis, growth mechanism, and exothermic properties of large-area Co3O4 nanowalls and nanowires on silicon substrates,” Journal of Applied Physics 112 (2012) 014310.
[57] Tao Li, Shaoguang Yang, Lisheng Huang, Benxi Gu and Youwei Du,“A novel process from cobalt nanowire to Co3O4 nanotube,” Nanotechnology 15 (2004) 1479–1482
[58] Zhaoyang Fei, Shengchao He, Lei Li, Weijie Ji and Chak-Tong Au,“ Morphology-directed synthesis of Co3O4 nanotubes based on modified Kirkendall effect and its application in CH4 combustion,” Chemical Communications 48 (2012) 853.
[59] Yongge Lv, Yong Li, Wenjie Shen,“ Synthesis of Co3O4 nanotubes and their catalytic applications in CO oxidation,” Catalysis Communications 42 (2013) 116-120.
[60] Don-Hyung Ha, Liane M. Moreau, Shreyas Honrao, Richard G. Hennig, and Richard D. Robinson, “The Oxidation of Cobalt Nanoparticles into Kirkendall-Hollowed CoO and Co3O4: The Diffusion Mechanisms and Atomic Structural Transformations,” J. Phys. Chem. C. 117 (2013) 14303−14312
[61] Smigelskas, A. D.Kirkendall, E. O, “ Zinc Diffusion in Alpha Brass,” Trans. AIME 171 (1947) 130–142.
[62] Sunil G. Kandalkar , C.D. Lokhande, R.S. Mane, Sung-Hwan Han, “A non-thermal chemical synthesis of hydrophilic and amorphous cobalt oxide films for supercapacitor application,” Applied Surface Science 253 (2007) 3952–3956
[63] M Moulapanah-Konaroi1, M Aliahmad and H Saravani, “Fabrication of superhydrophobic surface by Co3O4 nanoparticles,” Indian J Phys 87 (2013) 211–215
[64] Sijing Xie, Yan Zhao∗, Yijian Jiang, “Laser-induced hydrophobicity on single crystal zinc oxide surface,” Applied Surface Science 263 (2012) 405–409
[65] Jun Zhang, Yanru Liu, Zhiyang Wei, Junyan Zhang, “Mechanism for wettability alteration of ZnO nanorod arrays via thermal annealing in vacuum and air,” Applied Surface Science 265 (2013) 363– 368
[66] X.Q. Meng, D.X. Zhao, J.Y. Zhang, D.Z. Shen, Y.M. Lu, L. Dong, Z.Y. Xiao, Y.C. Liu, X.W. Fan, “Wettability conversion on ZnO nanowire arrays surface modified by oxygen plasma treatment and annealing,” Chemical Physics Letters 413 (2005) 450–453
[67] C. T. KRESGE, M. E. LEONOWICZ, W. J. ROTH, J. C. VARTULI AND J. S. BECK, “Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism,” Nature 359 (1992) 710 - 712
[68] Hongkyu Kang, Young-wook Jun, Jong-Il Park,Kyung-Bok Lee, and Jinwoo Cheon, “Synthesis of Porous Palladium Superlattice Nanoballs and Nanowires,”
Chem. Mater. 12 (2000) 3530-3532
[69] J. Byun, Y. Kim, G. Jeon, and J. K. Kim, “Ultrahigh density array of free-standing poly(3-hexylthiophene)nanotubes on conducting substrates via solution wetting,” Macromolecules 44 (2011) 8558-8562.
[70] X. Ren, C. H. Jiang , D. D. Li, and L. He, “Fabrication of ZnO nanotubes with ultrathin wall by electrodeposition method,” Mater. Lett. 62 (2008) 3114-3116.
[71] F. Tao, M. Guan, Y. Jiang, J. Zhu, Z. Xu, and Z. Xue “An easy way to construct an ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template Method,” Ad. Mater. 18 (2006) 2161-2164.
[72] J. H. Tian, J. Hu, F. Zhang, X. Li, J. Shi, J. Liu, Z. Q. Tian, and Y. Chen, “Fabrication of high density metallic nanowires and nanotubes for cell culture studies,” Microelectron. Eng. 88 (2011) 1702-1706.
[73] M. T. Wu, I. C. Leu, J. H. Yen, and M. H. Hon, “Preparation of Ni nanodot and nanowire arrays using porous alumina on silicon as a template without a conductive interlayer,” Electrochem.. Solid. St. 7 (2004) C61.
[74] X. W. Wang, Z. H. Yuan, and B. C. Fanga, “Template-based synthesis and magnetic properties of Ni nanotube arrays with different diameters,” Mater. Chem. Phys. 125 (2011) 1-4.
[75] A. A. Agrawal, B. J. Nehilla, K. V. Reisig, T. R. Gaborski, D. Z. Fang,C. C. Striemer, P. M. Fauchet, and J. L. McGrath, “Porous nanocrystalline silicon membranes as highly permeable and molecularly thin substrates for cell culture,” Biomaterials 31 (2010) 5408-5417.
[76] N. Chiboub, R. Boukherroub, N. Gabouze, S. Moulay, N. Naar, S. Lamouri, and S. Sam, “Covalent grafting of polyaniline onto aniline-terminated porous silicon,” Opt. Mater. 32 (2010) 748-752.
[77] P. N. Vinod, “Specific contact resistance and metallurgical process of the silver based paste for making ohmic contact structure on the porous silicon/p-Si surface of the silicon solar cell,” J. Mater. Sci. Lett. 21 (2010) 730-736.
[78] K. R. Wigginton and P. J. Vikesland, “Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection,”Analyst 135 (2010) 1320-1326.
[79] N. Baltes and J. Heinze, “Imaging local proton fluxes through a polycarbonateMembrane by using scanning electrochemical microscopyand functionalized alkanethiols,” Phys. Chem. Chem. Phys. 10 (2009) 174-179.
[80] Y. S. Li, F. Y. Liang, H. Bux, A. Feldhoff, W. S. Yang, and J. Caro, “Molecular sieve membrane: Supported metal-organic frameworkwith high hydrogen selectivity,” Angew. Chem. Int. Edit. 49 (2010) 548-551.
[81] D. Ramíreza, H. Gómeza, and D. Lincotb, “Polystyrene sphere monolayer assisted electrochemical deposition of ZnO nanorods with controlable surface density,” Electrochim. Acta. 55 (2010) 2191-2195.
[82] C. P. Chang, C. C. Tseng, J. L. Ou, W. H. Hwu, and M. D. Ger, “Growth mechanism of gold nanoparticles decoratedon polystyrene spheres via self-regulated reduction,” Colloid Polym. Sci. 288 (2010) 395-403.
[83] J. Ye, P. V. Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures, ” Nanotechnology 20 (2009) 465203 1-6.
[84] S. J. Lee, J. S. Choi, K. S. Park, G. Khang, Y. M. Lee, and H. B. Lee, “Response of MG63 osteoblast-like cells onto polycarbonate membrane surfaces with different micropore sizes,” Biomaterials 25 (2004) 4699–4707
[85] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam pre patterned aluminum Surfaces,” Appl. Phys. Lett. 78 (2001) 120-122.
[86] C. R. Martin, “Nanomaterials: a membrane-based synthetic approach,” Science 266 (1994) 1961–6.
[87] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycombstructures of anodic alumina,” Science 268 (1995) 1466-8.
[88] H. Masuda, F. Hasegwa, and S. Ono, “Self-ordering of cell arrangement of anodic porous alumina formed insulfuric acid solution,” J. Electrochem. Soc. 144 (1997) L127-30.
[89] O. Jessensky, F. Muller, and U. Go¨sele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72 (1998) 1173-5.
[90] A. P. Li, F. A. Birner, K. Nielsch, and U. Go¨sele, “Hexagonal pore arrays with a 50-420 nm interporedistance formed by self-organization in anodic alumina,” J. Appl. Phys. 84 (1998) 6023-6.
[91] C. R. Martin, “Membrane-based synthesis of nanomaterials,” Chem. Mater. 8 (1996) 1739–46.
[92] D. Routkevitch, A. A. Tager., J. Haruyama, D. Almawlawi, M. Moskovits, and J. M. Xu, “Nonlithographic nano-wirearrays: fabrication, physics, and device applications,” IEEE T. electron. Dev. 43 (1996) 1646-58.
[93] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71 (1997) 2770-2.
[94] J. C. Hulteen and C. R. Martin, “A general template-based method for the preparation of nanomaterials,” J. Mater. Chem. 7 (1997) 1075–87.
[95] F. Li, L. Zhang, and R. M. Metzger “On the growth of highly ordered pores in anodized aluminum oxide,” Chem. Mater. 10 (1998) 2470-80.
[96] L. Zaraska, G. D. Sulka, and M. Jaskuła, “The Effect of n-Alcohols on Porous Anodic Alumina Formed by Self-Organized Two-Step Anodizing of Aluminum in Phosphoric Acid,” Surface and Coatings Technology 204 (2010) 1729-1737.
[97] G. E. Thompson, “Porous anodic Alimina :Fabrication, Characterization and Applications,”Thin Solid film.297 (1997) 192-201
[98] O. Jessensky, F. Muller, and U. Gösele,“Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72 (1998) 1173-1175.
[99] F. Li , L. Zhang and R. M. Metzger, “On the growth of highly ordered pores in anodized aluminum oxide,” Chemistry of Materials 10 (1998) 2470-2480.
[100] A. Belwalkara, E. Grasinga, W. V. Geertruydenb, Z. Huangc, and W. Z. Misioleka, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,” J. Membrane Sci. 319 (2008) 192–198
[101] H. Masudaand K. Fukuda, “Ordered metal nanohole Arrays by two-step replication of honeycombstructure of anodic alumina,” Science 268 (1995) 1466-1468.
[102] H. Masuda, H. Yamada, M. Satoh, and H. Asoh, “Highly ordered nanochannel-array architecture in anodic alumina,” Applied Physics Letters 71 (1997) 2770-2772.
[103] Hideki Masuda, Masato Yotsuya, Mari Asano, Kazuyuki Nishio, Masashi Nakao, Atsushi Yokoo and Toshiaki Tamamura, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Applied Physics Letters 78 (2001) 826
[104] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic Alumina,” Advence Materials Vol.13 (2001) 189-192.
[105] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam pre patterned aluminum Surfaces,” Applied Physics Letters 78 (2001)120-122.
[106] Bradley R. Johnson, Michael J. Schweiger, S.K. Sundaram,” Chalcogenide nanowires by evaporation–condensation,” Journal of Non-Crystalline Solids 351 (2005) 1410–1416.
[107] Michael P. Zach, Kwok H. Ng and Reginald M. Penner, ”Molybdenum nanowires by electrodeposition,” Science 290 (2000) 2120.
[108] W. Lu and C. M. Lieber, “Semiconductor nanowires,” Journal of Physics D: Applied Physics 39 (2006) R387-R406.
[109] H. J. Fan, P. Werner and M. Zacharias, “Semiconductor Nanowires: From self-organization to patterned growth,” small No. 6 (2006) 700-717.
[110] Michael P. Zach, Kwok H. Ng and Reginald M. Penner, “Molybdenum nanowires by electrodeposition,” Science 290 (2000) 2120.
[111] Y. C. Sui, D. R. Acosta, J. A. Gonza´lez-Leo´n, A. Bermu´dez, J. Feuchtwanger, B. Z. Cui, J. O. Flores, and J. M. Saniger Structure, “Thermal Stability, and Deformation of Multibranched Carbon Nanotubes Synthesized by CVD in the AAO Template,” J. Phys. Chem. B 105 (2001) 1523-1527.
[112] Wei Wang Nan Li, Xiaotian Li, Wangchang Geng, Shilun Qiu, “Synthesis of metallic nanotube arrays in porous anodic aluminum oxide template through electroless deposition,” Materials Research Bulletin 41 (2006) 1417–1423.
[113] X.Y. Yuana,b,*, G.S. Wua, T. Xiea, Y. Lina, G.W. Menga, L.D. Zhanga,“ Autocatalytic redox fabrication and magnetic studies of Co–Ni–P alloy nanowire arrays,” Solid State Communications 130 (2004) 429–432.
[114] Qingtao Wang, Guanzhong Wang, Xinhai Han, Xiaoping Wang, and J. G. Hou, “
Controllable Template Synthesis of Ni/Cu Nanocable and Ni Nanotube Arrays: A One-Step Coelectrodeposition and Electrochemical Etching Method,” J. Phys. Chem. B, 109 (2005) 23326-23329.
[115] Huaqiang Cao, Liduo Wang, Yong Qiu, Qingzhi Wu, Guozhi Wang, Lei Zhang,
and Xiangwen Liu, “ Generation and Growth Mechanism of Metal (Fe, Co, Ni) Nanotube Arrays,” ChemPhysChem 7 (2006) 1500–1504.
[116] Xiang-Zi Li, Xian-Wen Wei, Yin Ye, “Template electrodeposition to cobalt-based alloys nanotube arrays,” Materials Letters 63 (2009) 578–580
[117] Charles J. Brumlik , Charles R. Martin, “Template synthesis of metal microtubules,” J. Am. Chem. Soc, 113 (8) 1991 3174–3175
[118] Feifei Tao, Mingyun Guan, Yuan Jiang, Jianmin Zhu, Zheng Xu, and Ziling Xuev, “ An EasyWay to Construct an Ordered Array of Nickel Nanotubes:The Triblock-Copolymer-Assisted Hard-Template Method,” Adv. Mater. 18 (2006) 2161–2164
[119] V. M. Aguero and R. C. Adamo, “Space applications of spindt cathode field emission arrays,” Spacecraft Charging Technology Conference 6 (2000) 347-352.
[120] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, and Y. W. Jin, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett. 75 (1999) 3129-3131.
[121] Zhenxing Song, Yujuan Xie, Suwei Yao, “Hongzhi Wang Field emission properties of electrodeposited cobalt nanowire arrays grown in anodic aluminum oxide,” Materials Letters 65 (2011) 44–45
] V. M. Aguero and R. C. Adamo, “Space applications of spindt cathode field emission arrays,” Spacecraft Charging Technology Conference 6 (2000) 347-352.
[122] Laurent Vila, Pascal Vincent, Laurence Dauginet-De Pra, Gilles Pirio, Eric Minoux, Laurent Gangloff, Sophie Demoustier-Champagne, Nicolas Sarazin, Etienne Ferain, Roger Legras, Luc Piraux, and Pierre Legagneux, “Growth and Field-Emission Properties of Vertically Aligned Cobalt Nanowire Arrays,” Nano Letters 4 (2004) 521-524
[123] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, and E. Schaller, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett. 76 (2000) 2071-2073.
[124] H. Y. Jung, S. M. Jung, G. H. Gu, and J. S. Suh, “Anodic aluminum oxide membrane bonded on a silicon wafer for carbon nanotube field emitter arrays,” Appl. Phys. Lett. 89 (2006) 013121-1 - 013121-3.
[125] T. Nishizawa, K. Ishida, “The Co (cobalt) system,” Journal of Phase Equilibria. 4 (1983) 387-390
[126] R. Takagi, “Growth of Oxide Whiskers On Metals at High Temperature,” J. Phys. Soc. Jpn. 12 (1957) 1212-1218
[127] J. A. Sartell, R. J. Stokes, S. H. Bendel, T. L. Johnson, C. H. Li, “Role of oxide plasticity in the oxidation mechanism of pure copper,” Trans. Metall. Soc. AIME. 215 (1959) 420.
[128] Myo Tay Zar Myint, Nithin Senthur Kumar, Gabor Louis Hornyak, Joydeep Dutta, “Hydrophobic/hydrophilic switching on zinc oxide micro-textured surface,” Applied Surface Science 264 (2013) 344– 348
指導教授 鄭紹良 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明