博碩士論文 952204017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.226.150.251
姓名 許琇雁(Hsiu-Yen Hsu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 以蛋白質體學鑑定嗜熱放線菌 Thermomonospora fusca生長於纖維素之分泌蛋白質
(Proteomic identification of proteins secretedfrom Thermomonospora fusca grown on cellulose )
相關論文
★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究★ 鄰苯二酚加氧酵素的熱穩定性提昇研究
★ Triton X-100 分解菌之分離和分解酵素之特性研究★ Triton X-100加氧酵素之純化與定性
★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究★ 蕃茄根部受銅逆境之基因調控
★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離
★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究★ 辛基苯酚之分解:分解菌和生物復育之菌相研究
★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性★ AtNPR1轉殖番茄之性狀分析及抗病機制研究
★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究★ 以功能性蛋白質體學研究Pseudomonas nitroreducens TX1生長於辛基苯酚聚氧乙基醇之代謝與逆境反應
★ 以功能性蛋白質體學研究Pseudomonas putida TX2生長於 辛基苯酚聚氧乙基醇與辛基苯酚之代謝與逆境反應★ 以功能性基因體學研究細菌異化辛基苯酚 聚氧乙基醇及抗逆境之基因
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 嗜高溫放線菌(Thermomonospora fusca YX)可分泌多種胞外熱穩定蛋白質,特別是纖維素之分解酵素。此菌株在1957年於德國由Henssen等人從馬糞堆肥中分離;在本研究進行中時,2007年三月由Wilson等人完成基因體定序,共有3117個ORFs,並於同年九月發表首篇以蛋白質體學研究T. fusca YX生長於纖維雙糖(cellobiose)之胞外蛋白質。
本研究之目的為探討T. fusca YX生長在以纖維素(cellulose)為唯一碳源的環境下之胞外蛋白質,菌株培養在最適溫度(55oC),並於穩定期收集胞外蛋白質體,經由蛋白質體學方法(一維、二維電泳分離蛋白質經膠體內胰蛋白酶消化及直接在分泌體中進行消化),續以兩種不同質譜儀(LC-Q-TOF-MS/MS及MALDI-Q-TOF-MS/MS)鑑定蛋白質,鑑定到的蛋白質以蛋白質家族(Pfam)及兩種胞內外蛋白質預測工具(CELLO及PSORTb)判斷蛋白質於細胞的位置(subcellular location)。研究中共鑑定到93個蛋白質,其中32個(34.4%)為胞外蛋白質,8個( 8.6%)為膜蛋白質,53個(57.0%)為細胞內蛋白質。32個已鑑定胞外蛋白質以COG進行功能分類,與醣類代謝相關蛋白質佔30%。本研究已鑑定12個與醣苷水解酶有關的酵素(如cellulase, endoglucanase, xylanase),5個具醣類結合結構的蛋白質(如cellulose-binding protein),2個與多醣分解相關蛋白質(pectate lyase、parallel beta-helix repeat-containing ricin B lecctin),4個蛋白質分解酶(serine peptidase、aminopeptidase Y、hypothetical protein Tfu 0745、hypothetical protein Tfu 0746),4個酯/脂解酶(acetyl xylan esterase、triacylglycerol lipase、hypothetical protein Tfu 2387),1個抗氧化酶(superoxide dismutase),2個與細胞壁上結合相關蛋白質(surface protein、hypothetical protein Tfu 2615),1個抗生素(bacteriocin)及1個熱休克蛋白質(heat shock protein DnaJ)。
本研究與2007年Wilson研究團隊於研究方法上有以下3點不同: (1)菌株生長所選用的唯一碳源分別為cellulose與cellobiose;(2)收集分泌體的時間點上,本研究於可分泌大量蛋白質的穩定期,Wilson則為對數期;(3)胞外蛋白質的分析方法上,我們以一維、二維電泳及四種不同條件之溶液內消化進行分析,使分析複雜蛋白質體更加完整,而Wilson僅以二維電泳進行分析。將Wilson鑑定到15個胞外蛋白質與本研究鑑定到32個胞外蛋白質進行比較,有11個相同(Tfu 0620、Tfu 1074、Tfu 1627、Tfu 1959、Tfu 2176、Tfu 0901、Tfu 2923、Tfu 2130、Tfu 1268、Tfu 1665、Tfu 2403),有4個於本研究中未發現: putative secreted xylanase or chitin deacetylase (Tfu 2789)、putative secreted protein containing lytic transglycosylase and goose egg white lysozyme domain (Tfu 0458)、putative secreted proteolytic enzyme containing NLPC_P60 domain (Tfu 1029、putative secreted proteolytic enzyme containing NLPC_P60 domain (Tfu 2262),而我們多鑑定到21個胞外蛋白質,如(1)多醣類分解酶: cellulase (Tfu 2712)、2種xylanase (Tfu 1213、Tfu 2791)、pectate lyase (Tfu 2168)、mannan endo-1,4-beta-mannosidase (Tfu 0900);(2)具醣類結合結構的蛋白質: 3種cellulose binding protein (Tfu 2990、Tfu 2788、Tfu 1612)、parallel beta-helix repeat-containing ricin B lectin(Tfu 1643);(3)可將環境中大分子有機物分解為小分子的分解酶: serine peptidase (Tfu 0484)、acetyl xylan esterase (Tfu 0082)、2種triacylglycerol lipase (Tfu 0882、Tfu 0883)、hypothetical protein Tfu 0745、hypothetical protein Tfu 0746、hypothetical protein Tfu 2387;(4)可清除細胞外會造成酵素受到氧化損害的超氧化物或自由基之抗氧化酵素: superoxide dismutase (Tfu 0957);(5)其他: bacteriocin (Tfu 0814)、heat shock protein DnaJ (Tfu 0198)、surface protein (Tfu 0607)、hypothetical protein Tfu 2615。
本研究希望以T. fusca YX建立鑑定環境微生物分泌蛋白體學之平台,尤其是針對嗜熱性纖維素分解菌,以助於生質酒精的開發;此外,比較兩種蛋白質細胞位置預測工具的準確性與效能,PSORTb (Precision 100%,Recall 0.89)略佳於CELLO (Precision 92%,Recall 0.83),但CELLO針對胞外蛋白質的預測則較為準確,研究中鑑定到的32個胞外蛋白質,CELLO預測結果有31筆為True positive (TP),因此,以CELLO較適用於T. fusca YX之胞外蛋白質的研究,將來可用於預測其他放線菌的胞外蛋白質。
摘要(英) Thermophilic actinomycete (Thermomonospora fusca YX) is able to secrete many different extracellular thermophilic proteins, especially the cellulose degrading enzymes. This bacterium was isolated from horse compost by Henssen et al. in Germany 1957. In March of 2007, Wilson et al. completed the genome sequence of YX with a total of 3117 ORFs; furthermore, in the same year of 2009, T. fusca YX was published for the identification of cellobiose using the study of proteomics.
In our study, we want to find the extracellular proteins secreted from T. fusca YX using cellulose as the sole carbon source grown at 55oC. The extracellular proteins are collected when bacteria are harvested at stationary phase. This study uses proteomics (1D and 2D SDS-PAGE using in-gel and in-solution digestion), followed by two different mass analysis (LC-Q-TOF-MS/MS and MALDI-Q-TOF-MS/MS). The enzymes identified are analyzed using Pfam and extracellular protein prediction tools (CELLO and PSORTb) to delicately predict the proteins in the subcellular location. The 93 proteins were identified and among them, 32 (34.4%) were extracellular proteins, 8 (8.6%) were membrane proteins, 53( 57%) were cytosolic proteins. The 32 extracellular proteins were further using COG for function classification. There were 30% of proteins related to glycolysis and most are either slightly acidophilic proteins (the pIs lower than 7 are 82%). This study also identified 12 glycoside hydrolyzing enzyme (for example, cellulase), 5 glucose binding proteins such as cellulose binding proteins, 2 were polysaccharide related degrading enzymes (pectate lyase, parallel beta-helix repeat-containing ricin B lecctin), 4 were protein protease (serine peptidase, aminopeptidase Y, hypothetical protein Tfu 0745, hypothetical protein Tfu 0746), 4 were esterase/lipase (such as acetyl xylan esterase and triacylglycerol lipase), 1 antioxidant enzymes (superoxide dismutase), 2 cell wall/solute-binding proteins (the surface protein, hypothetical protein Tfu 2615), 1 antibiotic (bacteriocin) and 1 heat shock proteins (heat shock protein DnaJ).
In 2007, the Wilson group uses only 2D SDS-PAGE to analyze extracellular proteomes and the 15 proteins identified in the literature were compared with 32 proteins found in our lab. There were 11 matched proteins with the additional 21 thermostable secretomes that were not identified in Wilson’s study. The 21 proteins are for example, the glucose degrading enzymes such as cellulose, xylanase, pectate lyase, and mannan endo-1,4-beta-mannosidase. The protease that is able to degrade large molecules of organic materials into smaller ones in the environment like serine peptidase, aminopeptidase Y, acetyl xylan esterase and triacyoglycerol lipase; proteins like superoxide dismutase that is able to act again the toxins from hydrogen peroxide or free radicals in order to protect cells from damage. And finally, antibiotic like bacteriocin for inhibit or terminate bacterial infection.
We selected a growth phase and carbon source (cellulose) that is able to secrete a great amount of secretome, which is different from Wilsons that use cellobiose as the sole carbon source and harvest bacteria at the log phase. Other than 2D SDS-PAGE for protein separation, 1D SDS-PAGE and 4 different conditions of Gel-free digestion are also used in order to increase the protein amount. The three different isolation methods can provide a full report for complex proteomic research. We use T. fusca YX to as a model and built a research platform for studying the secretome of the environmental microorganisms, especially this thermostable cellulolytic bacterium is helpful in the exploration of bioethanol research; in addition, when comparing the above tools for predicting cellular localization in terms of precision and performance, CELLO is the most suitable prediction tool for the cell localization of T. fusca YX in the proteomic study of actinomycetes.
關鍵字(中) ★ 纖維素分解酶
★ 纖維素
★ 胞外蛋白質
★ 嗜高溫放線菌
★ 蛋白質體
關鍵字(英) ★ cellulose
★ cellulase
★ Proteomic
★ extracellular protein
★ Thermophilic actinomycete
論文目次 摘要……………………...…………………………...…………………..I
Abstract....................................................IV
目錄……………………...…………………………..…………………..VII
圖目錄……………………………………………..…………….….........X
表目錄……………………………………………..………….……….....XII
附錄目錄…………………………………………..……………...….......XIII
縮寫與全名對照………………………………...…………………….....XIV
壹、緒論…………………………………………...……….……………..1
一、熱穩定性酵素及其應用價值……….........…………………….…1
二、嗜熱菌之特性及其嗜熱機制……........…………………….…….3
2-1 生理特性….....…………..........................………..3
2-2 嗜熱機制….................………............………..…4
三、嗜高溫放線菌在生物技術產業之應用..............................6
四、Thermomonospora fusca YX簡介...............................7
五、蛋白質體學於T. fusca YX.…….......……..........…….8
5-1 蛋白質體學之介紹.......................................8
5-2 T. fusca YX之蛋白質體學..................................9
六、研究動機與目的........................................10
貳、材料與方法……………………………......…………………………12
一、菌株與培養基............................................12
二、生長.......................................................13
三、胞外蛋白質樣品製備....................................14
四、蛋白質定量.................................................15
五、蛋白質一維電泳分析........................................16
六、蛋白質二維電泳分析........................................18
七、電泳膠體軟體分析.........................................21
八、膠體內消化(In-gel digestion)......................21
九、溶液內消化(Gel-free digestion).....................23
十、蛋白質鑑定...........................................24
十一、次細胞位置........................................24
十二、實驗儀器與化學藥品.................................25
叁、結果………………………............................….30
一、T. fusca YX之生長……...........................………..30
二、胞外蛋白質體之膠體電泳分析…………….......………………...30
三、胞外蛋白質體之溶液內消化.................................33
四、不同方法鑑定之熱穩定胞外蛋白質........................34
五、蛋白質之功能分類…………………….......................34
肆、討論……………………………………………….....………………37
一、胞外蛋白質總量......................................37
二、胞外蛋白質分子量及等電點分析........................38
三、胞外蛋白質功能分析.......................................39
四、以三種方法研究胞外蛋白質之結果探討......................41
五、以蛋白質體學研究胞外蛋白質之文獻比較.....................42
六、生物資訊應用於胞外蛋白質之預測..........................44
伍、結論與建議……………………………...…………………………..46
陸、參考文獻…………………………………...………………………..48
柒、圖…………………………………………...………………………..53
捌、表……………………………………...……………………………..73
玖、附錄……………………………………...…………………………..91
參考文獻 Biely, P., Mislovicova, D. & Toman, R. (1985) Soluble chromogenic substrates for the assay of endo-1,4-beta-xylanases and endo-1,4-beta-glucanases. Anal Biochem 144(1), 142-6.
Blanco, J., Coque, J.J., Velasco, J. & Martin, J.F. (1997) Cloning, expression in Streptomyces lividans and biochemical characterization of a thermostable endo-beta-1,4-xylanase of Thermomonospora alba ULJB1 with cellulose-binding ability. Appl Microbiol Biotechnol 48(2), 208-17.
Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H.W. & Stetter, K.O. (1997) Pyrolobus fumarii, gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 degrees C. Extremophiles 1(1), 14-21.
Bradford, M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-54.
Busch, J.E. & Stutzenberger, F.J. (1997) Amylolytic activity of Thermomonospora fusca. World J. Microbiol. Biotechnol. 13, 637-642.
Chen, S. & Wilson, D.B. (2007) Proteomic and transcriptomic analysis of extracellular proteins and mRNA levels in Thermobifida fusca grown on cellobiose and glucose. J Bacteriol 189(17), 6260-5.
Crawford., D.L. (1975) Cultre, morphological, and physiological characteristica of Thermomonospora fusca (strain 190). . Can. J. Microbiol. : 21, 1842-1848.
Cross, T. & Goodfellow, M. (1973) Taxonomy and classification of the actinomycetes. Soc Appl Bacteriol Symp Ser 2, 11-112.
Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L., Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M., Huber, R., Feldman, R.A., Short, J.M., Olsen, G.J. & Swanson, R.V. (1998) The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392(6674), 353-8.
Empadinhas, N. & da Costa, M.S. (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9(3), 199-206.
Fett, W.F., Wijey, C., Moreau, R.A. & Osman, S.F. (1999) Production of cutinase by Thermomonospora fusca ATCC
27730. J. Appl. Microbiol 86, 561-568.
Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.R., Ceric, G., Forslund, K., Eddy, S.R., Sonnhammer, E.L. & Bateman, A. (2008) The Pfam protein families database. Nucleic Acids Res 36(Database issue), D281-8.
Gardy, J.L. & Brinkman, F.S. (2006) Methods for predicting bacterial protein subcellular localization. Nat Rev Microbiol 4(10), 741-51.
Gardy, J.L., Laird, M.R., Chen, F., Rey, S., Walsh, C.J., Ester, M. & Brinkman, F.S.L. (2005) PSORTb v.2.0: Expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21, 617-623.
Gorg, A., Obermaier, C., Boguth, G., Harder, A., Scheibe, B., Wildgruber, R. & Weiss, W. (2000) The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21(6), 1037-53.
Gusek, T.W. & Kinsella, J.E. (1987) Purification and characterization of the heat-stable serine proteinase from Thermomonospora fusca YX. Biochem J 246(2), 511-7.
Henrissat, B. & Davies, G.J. (2000) Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol 124(4), 1515-9.
Henssen, A. (1957) [Morphology and system of thermophilic actinomycetes.]. Arch Mikrobiol 26(4), 373-414.
Hickey, D.A. & Singer, G.A. (2004) Genomic and proteomic adaptations to growth at high temperature. Genome Biol 5(10), 117.
Holo, H., Nilssen, O. & Nes, I.F. (1991) Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. J Bacteriol 173(12), 3879-87.
Hoving, S., Gerrits, B., Voshol, H., Muller, D., Roberts, R.C. & van Oostrum, J. (2002) Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics 2(2), 127-34.
Huber, R., Eder, W., Heldwein, S., Wanner, G., Huber, H., Rachel, R. & Stetter, K.O. (1998) Thermocrinis ruber gen. nov., sp. nov., A pink-filament-forming hyperthermophilic bacterium isolated from yellowstone national park. Appl Environ Microbiol 64(10), 3576-83.
Jaenicke, R. (1998) What ultrastable globular proteins teach us about protein stabilization. Biochemistry (Mosc) 63(3), 312-21.
Kashefi, K. & Lovley, D.R. (2003) Extending the upper temperature limit for life. Science 301(5635), 934.
Kawashima, T., Amano, N., Koike, H., Makino, S., Higuchi, S., Kawashima-Ohya, Y., Watanabe, K., Yamazaki, M., Kanehori, K., Kawamoto, T., Nunoshiba, T., Yamamoto, Y., Aramaki, H., Makino, K. & Suzuki, M. (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci U S A 97(26), 14257-62.
Kim, J.H., Irwin, D. & Wilson, D.B. (2004) Purification and characterization of Thermobifida fusca xylanase 10B. Can J Microbiol 50(10), 835-43.
Kroll, J.S., Langford, P.R. & Loynds, B.M. (1991) Copper-zinc superoxide dismutase of Haemophilus influenzae and H. parainfluenzae. J Bacteriol 173(23), 7449-57.
Lawrence, H.M., Merivuori, H., Sands, J.A. & Pidcock, K.A. (1986) Preliminary Characterization of Bacteriophages Infecting the Thermophilic Actinomycete Thermomonospora. Appl Environ Microbiol 52(4), 631-636.
Li, W.F., Zhou, X.X. & Lu, P. (2005) Structural features of thermozymes. Biotechnol Adv 23(4), 271-81.
Lin, E. & Wilson, D.B. (1987) Regulation of beta-1,4-Endoglucanase Synthesis in Thermomonospora fusca. Appl Environ Microbiol 53(6), 1352-1357.
Lykidis, A., Mavromatis, K., Ivanova, N., Anderson, I., Land, M., DiBartolo, G., Martinez, M., Lapidus, A., Lucas, S., Copeland, A., Richardson, P., Wilson, D.B. & Kyrpides, N. (2007) Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J Bacteriol 189(6), 2477-86.
Madigan, M.T. & Oren, A. (1999) Thermophilic and halophilic extremophiles. Curr Opin Microbiol 2(3), 265-9.
McCarthy, A.J. (1989) Thermomonospora and related genera.In Bergey's Manual of Systematic Bacteriology, vol. 4,
pp. 2552-2572. Edited by S. T. Williams, M. E. Sharpe &
J. G. Holt. Baltimore: Williams & Wilkins.
.
McCarthy, A.J., and Cross, T. (1984) A taxonomic study of Thermomonospora and other nonsporic actinomycetes. . J. Gen. Microbiol. 130, 5-25.
Mongodin, E.F., Hance, I.R., Deboy, R.T., Gill, S.R., Daugherty, S., Huber, R., Fraser, C.M., Stetter, K. & Nelson, K.E. (2005) Gene transfer and genome plasticity in Thermotoga maritima, a model hyperthermophilic species. J Bacteriol 187(14), 4935-44.
Nakashima, H., Fukuchi, S. & Nishikawa, K. (2003) Compositional changes in RNA, DNA and proteins for bacterial adaptation to higher and lower temperatures. J Biochem (Tokyo) 133(4), 507-13.
Nelson, K.E., Clayton, R.A., Gill, S.R., Gwinn, M.L., Dodson, R.J., Haft, D.H., Hickey, E.K., Peterson, J.D., Nelson, W.C., Ketchum, K.A., McDonald, L., Utterback, T.R., Malek, J.A., Linher, K.D., Garrett, M.M., Stewart, A.M., Cotton, M.D., Pratt, M.S., Phillips, C.A., Richardson, D., Heidelberg, J., Sutton, G.G., Fleischmann, R.D., Eisen, J.A., White, O., Salzberg, S.L., Smith, H.O., Venter, J.C. & Fraser, C.M. (1999) Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399(6734), 323-9.
Nishio, Y., Nakamura, Y., Kawarabayasi, Y., Usuda, Y., Kimura, E., Sugimoto, S., Matsui, K., Yamagishi, A., Kikuchi, H., Ikeo, K. & Gojobori, T. (2003) Comparative complete genome sequence analysis of the amino acid replacements responsible for the thermostability of Corynebacterium efficiens. Genome Res 13(7), 1572-9.
Posta, K., Beki, E., Wilson, D.B., Kukolya, J. & Hornok., L. (2004) Cloning, characterization and phylogenetic relationships of cel5B, a new endoglucanase encoding gene from Thermobifida fusca. J. Basic Microbiol 44, 383-399.
Russell, N.J. (1997) Psychrophilic bacteria--molecular adaptations of membrane lipids. Comp Biochem Physiol A Physiol 118(3), 489-93.
Satyanarayana, T., Noorwez, S.M., Kumar, S., Rao, J.L., Ezhilvannan, M. & Kaur, P. (2004) Development of an ideal starch saccharification process using amylolytic enzymes from thermophiles. Biochem Soc Trans 32(Pt 2), 276-8.
Spiridonov, N.A. & Wilson, D.B. (1998) Regulation of biosynthesis of individual cellulases in Thermomonospora fusca. J Bacteriol 180(14), 3529-32.
Stackebrandt, E., Rainey, F.A. & Ward-Rainey, N.L. (1997) Proposal for a New Hierarchic Classification System, Actinobacteria classis nov. Int J Syst Bacteriol 47, 479-491.
Suhre, K. & Claverie, J.M. (2003) Genomic correlates of hyperthermostability, an update. J Biol Chem 278(19), 17198-202.
Szilagyi, A. & Zavodszky, P. (2000) Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 8(5), 493-504.
Takami, H., Nishi, S., Lu, J., Shimamura, S. & Takaki, Y. (2004) Genomic characterization of thermophilic Geobacillus species isolated from the deepest sea mud of the Mariana Trench. Extremophiles 8(5), 351-6.
Tanaka, Y., Tsumoto, K., Yasutake, Y., Umetsu, M., Yao, M., Fukada, H., Tanaka, I. & Kumagai, I. (2004) How oligomerization contributes to the thermostability of an archaeon protein. Protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii. J Biol Chem 279(31), 32957-67.
Tatusov, R.L., Fedorova, N.D., Jackson, J.D., Jacobs, A.R., Kiryutin, B., Koonin, E.V., Krylov, D.M., Mazumder, R., Mekhedov, S.L., Nikolskaya, A.N., Rao, B.S., Smirnov, S., Sverdlov, A.V., Vasudevan, S., Wolf, Y.I., Yin, J.J. & Natale, D.A. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41.
Vieille, C., Burdette, D.S. & Zeikus, J.G. (1996) Thermozymes. Biotechnol Annu Rev 2, 1-83.
Vieille, C. & Zeikus, G.J. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1), 1-43.
Wheals, A.E., Basso, L.C., Alves, D.M. & Amorim, H.V. (1999) Fuel ethanol after 25 years. Trends Biotechnol 17(12), 482-7.
Yamazaki, S., Yamazaki, J., Nishijima, K., Otsuka, R., Mise, M., Ishikawa, H., Sasaki, K., Tago, S. & Isono, K. (2006) Proteome analysis of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1. Mol Cell Proteomics 5(5), 811-23.
Yeoman, K.H. & Edwards, C. (1994) Protease production by Streptomyces thermovulgaris grown on rapemeal-derived media. J Appl Bacteriol 77(3), 264-70.
Yu, C.S., Lin, C.J. & Hwang, J.K. (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13(5), 1402-6.
Zhang, Z., Wang, Y. & Ruan, J. (1998) Reclassification of Thermomonospora and Microtetraspora. Int J Syst Bacteriol 48 Pt 2, 411-22.
Zhu, W., Reich, C.I., Olsen, G.J., Giometti, C.S. & Yates, J.R., 3rd (2004) Shotgun proteomics of Methanococcus jannaschii and insights into methanogenesis. J Proteome Res 3(3), 538-48.
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2009-2-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明