參考文獻 |
[1.1] 楊德仁,太陽能光電材料,化學工業出版社,北京,2006。
[1.2] 張品全,科學發展,349, pp.34-41,2004。
[1.3] P. Würfel, Physics of Solar Cells, Willy -VCH Verlag GmbH & Co. KgaA, 2005.
[1.4] Gavin Conibeer, “Review: Third-generation photovoltaics”, Material Today, 10 (11), pp. 745-747, 1987.
[1.5] 顧鴻濤,太陽能電池元件導論,全威圖書有限公司,台北,2008。
[1.6] A.Luque and A.Martí, " Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels", Physical Review Letters, 78 (26), pp.5014-5017, Feb 1997.
[1.7] NREL, Latest chart on record cell efficiency: Best Research-cell Efficiencies, 05-11-2014, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
[2.1] C. Leguijt, et al., “Very low surface recombination velocities on 2.5 Ω cm Si wafers, obtained with low-temperature PECVD of Si-oxide and Si-nitride”, Solar Energy Materials and Solar Cells, 34 (1-4), pp. 177-181, 1994.
[2.2] M. Kerr, et al., “Comparison of the open circuit voltage of simplified PERC cells passivated with PECVD silicon nitride and thermal silicon oxide”, Progress in Photovoltaics: Research and Applicaions , 8 (5), pp. 529-536, 2000.
[2.3] B.J. O′Sullivan, et al., “Atomic and Electrical Characterisation of Amorphous Silicon Passivation Layers”, Energy Procedia, 27, pp. 185-190, 2012.
[2.4] G. D. Wilk, et al., “High-k gate dielectrics: Current status and materials properties considerations”, Journal of Applied Physics, 89 (10), pp. 5243-5275, 2001.
[2.5] R. S. Johnson, et al., “Electron traps at interfaces between Si(100) and noncrystalline Al2O3, Ta2O5, and (Ta2O5)x(Al2O3)1−x alloys”, Journal of Vacuum Science & Technology B: Microelectroics and Nanometer structures, 19 (4), pp. 1606-1621, 2001.
[2.6] K. Jager and R. Hezel, “A novel thin silicon solar cell with Al2O3 as surface passivation”, Proceeding of the 18th IEEE PVSC, pp.1752, Las Vegas, 1985.
[2.7] G. Agostinelli, et al., “Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge”, Solar Energy Materials & Solar Cells, 90 (18-19), pp. 3438-3443, 2006.
[2.8] B. Hoex, et al., “On the c-Si surface passivation mechanism by the negative-chargedielectric Al2O3”, Journal of Applied Physics, 104 (11), pp. 113703, 2008.
[2.9] S . Kimura, et al., “Leakage-current increase in amorphous Ta205 films due to pinhole growth during annealing below 600℃”, Journal of Electrochemical Society, 130, pp. 2414-2417, 1983.
[2.10] H. Kimura, et al., “Exafs Studies of the Difference in Local Structure of Various Tantalum Oxide Capacitor Films”, Material Research Society Proceedings, 354,pp. 489-451, Washington, 1994.
[2.11] Yuichi Matsui, et al., “Reduction of Current Leakage in Chemical-Vapor Deposited Ta2O5 Thin-Films by Oxygen-Radical Annealing”, IEEE Electron Device Letters, 17(9), pp.431-434, Sep 1996.
[2.12] Fu-Chien Chiu, et al., “Leakage currents in amorphous Ta2O5 thin films”, Journal of Applied Physics, 81 (10), pp. 6911-6915, 1997.
[2.13] S. Chakraborty, et al., “Electrical Properties of High-k Ta205 Gate Dielectrics on Strained Ge-rich Layers”, Proceedings 24th International Conference on Microelectronics, 2, pp. 483-486, Serbia and Montenegro, May 2004.
[2.14] S. A. Campbell, et al., “Titanium dioxide (TiO2)-based gate insulators", IBM journal of Research and Development, 4 (3), pp. 383-393, 1999.
[2.15] E. Atanassova, A. Paskaleva, “Breakdown fields and conduction mechanisms in thin Ta2O5 layers on Si for high density DRAMs”, Microelectronics Reliability, 42 (2), pp. 157-173, 2002.
[2.16] Jan Schmidt et al., “Surface passivation of silicon solar cells using plasma-enhenced chemical-vapour-deposited SiNfilm and thin thermal SiO2/plasma SiN stacks”, Semiconductor science and technology, 16 (3), pp.164-170, Dec 2001.
[2.17] N. E. Posthuma, et al., “Surface passovation for germanium phtovoltaic cells”, Solar Energy Materials and Solar Cells, 88 (1), pp. 37-45, 2005.
[3.1] J. Schmidt et al., “Coulomb-enhanced Auger recombination in crystalline silicon at intermediate and high-injection densities”, Journal of Applied Physics, 88 (3), pp. 1494-1497, Feb 2000.
[3.2] D. K. Schroder, “Semiconductor Material and Device Characterization”, 2/e, John Wiley and Sons, New Jersey, USA, 1998.
[3.3] P. T. Landsberg, “Trap-Auger recombination in Silicon of low carrier densities”, Applied Physics Letters, 50 (12), pp.745-747, Jan 1987.
[3.4] D. B. Laks et al., “Accurate interband-Auger-recombination rates in Silicon”, Physical Review B, 42 (8), pp. 5176-5185, Sep 1990.
[3.5] Maek J. Kerr and Andres Cuevas, “General parameterization of Auger recombination in crystalline Silicon”, Journal of Applied Physics, 91(4), pp. 2473-2481, Nov 2002.
[3.6] E. Yablonovitch et al., “Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces”, Physical Review Letters, Vol. 57, 2, pp. 249-252, Jul 1986.
[3.7] W. shockley and W. T. Read, “Statistics of the Recombinations of Holes and Electrons”, Physical Review, 87, pp. 835-842, Sep 1952.
[3.8] R. N. Hall, “Electron-Hole recombination in Germanium”, Physical Review, 87, pp. 387, Jul 1952.
[3.9] Donald A. Neamen, Semiconductor Physics & Devices, 3/E, McGraw-Hill, New York, 2003.
[3.10] Q. Y. Tong et al., “Hydrophobic Silicon wafer bonding”, Applied Physics Letters, 64 (5), pp. 625-627, Nov 1993.
[3.11] Susanne Helland, “Electrical Characterization of Amorphous Silicon Nitride Passivation Layers for Crystalline Silicon Solar Cells”, Norwegian University of Science and Technology, master thesis, 2011.
[3.12] D. M. Caughey and R. E. Thomas, “Carrier Mobilities in Silicon Empirically Related to Doping and Field”, Proceedings of the IEEE, pp.2192-2193, Dec 1967.
[3.13] P. H. Nguyen, et al., “Comparative full-band Monte Carlo study of Si and Ge with screened pseudopotential-based phonon scattering rates”, Journal of Applied Physics, 92 (9), pp. 5359-5371, 2002.
[4.1] J. Kim, et al., “Germanium Surface Cleaning with Hydrochloric Acid”,The Electrochemical Society meeting, 3 (7), pp. 1191-1196, 2006.
[4.2] J. M. Hutson, et al., “Electrical and radiation assisted passivation of Ta2O5 / Si interface”, Journal of Applied Physics, 95 (12), June 2004.
[4.3] J. Schmit, et al., “Surface Passivation of High-efficiency Silicon Solar Cells by Atomic-layer-deposited Al2O3”,Proceedings in photovoltaics: Research and Applications, 16 (6), pp. 461-466, Sep 2008.
[4.4] Keith R. McLntosh, et al., “Charge Density in Atmospheric Pressure Chemical Vapor Deposition TiO2 on SiO2-Passivated Silicon”, Journal of the Electrochemical Society, 156 (11), pp. 190-195, Sep 2009.
[4.5] Jan Schmidt et al., “Surface passivation of silicon solar cells using plasma-enhenced chemical-vapour-deposited SiN film and thin thermal SiO2/plasma SiN stacks”, Semiconductor science and technology, 16, pp. 164-170, Dec 2001.
[4.6] F. Kersten, et al., “Role of annealing conditions on surface passivation properties of ALD Al2O3 films”, Energy Precedia, 38, pp. 843-848, Mar 2013.
[4.7] S. Chakraborty, et al., “Effects of annealing on the electrical properties of TiO2 films deposited on Ge-rich SiGe substrates”, Journal of Applied Physics, 100 (023706), pp. 1-6, Jul 2006.
[4.8] S. P. Murarka, M. Eizenberg, A. K. Sinha, Interlayer Dielectrics, Elsevier Inc., London UK, 2003.
[4.9] K. Kita and S. Suzuki et al., “Direct Evidence of GeO Volatilization from GeO2/Ge and Impact of Its Suppression on GeO2/Ge Metal–Insulator–Semiconductor Characteristics”, Japanese Journal of Applied Physics, 47 (4), pp.2349-2353, Apr 2008
[4.10] R. SinTon and D. Macdonald, WCT-120 Photoconductance Lifetime Tester and optional Suns-VOC Stage User Manual, SINTON CONSULTING, Inc, Colorado, USA.
[4.11] Steven M. George, “Atomic Layer Deposition: An Overview”, Chemical Review, 110, pp.111-131, Feb 2009.
[4.12] Y. Wan et al., “Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells”, Applied Physics Letters Advances, 3 (032113), pp.1-14, 2013.
[4.13] A. G. Aberle and R. Hezel, “Progress in Low-temperature Surface Passivation of Silicon Solar Cells using Remote-plasma Silicon Nitride”, Progress in Photovoltaics: Research and Applications, 5, pp. 29-50, 1997.
[5.1] Y. Otani, et al., “Fabrication of Ta2O5/GeNx gate insulator stack for Ge metal-insulator-semiconductor structures by electron-cyclotron-resonance plasma nitridation and sputtering deposition techniques”, Applied Physics Letters, 90 (14), pp. 1421114-1421117, 2007.
[5.2] J. T. Mayer, et al., “Titanium and reducd titania overlayers on titanium dioxide (110)”, Journal of Electron Spectroscopy and Related Phenomena, 73 (1), pp. 1-11, May 1995.
[5.3] S. Hashimoto, et al., “Formulation for XPS Spectral Change of oxides by Ar Ion Bombardment: Application of the formulation to Ta2O5 System”, Journal of Surface Analysis, 13 (1), pp. 14-18, Mar 2006
[5.4] E. Atanassova, et al., “XPS study of N2 annealing effect on thermal Ta2O5 layers on Si”, Applied Surface Science, 225 (1-4), pp. 86-99, Sep 2004.
[5.5] X. Ling, “Characteristics and Electrical Properties of SiHx:H Films Fabricated by Plasma-Enhanced Chemical Vapor Deposition”, Journal of Electronic Science and Technology of China, 3 (3), pp. 264-267, Sep 2005.
[5.6] Michael Blech, et al., “Detailed Study of PECVD Silicon Nitride and Correlation of Various Characterization Techniques”, 24th European Photovoltaic Solar Energy Conference, pp. 507-509, Hamburg, Germany, Sep 2009.
|