博碩士論文 102226054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:18.191.223.26
姓名 李京樺(Ching-Hua Li)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以矽硼合金靶製作異質接面太陽能電池
(Fabrication of P type Hydrogenated Silicon Thin Films Applied to Heterojunction Solar Cell Using Silicon-Boron alloy target)
相關論文
★ 膜堆光學導納量測儀★ 以奈米壓印改善陽極氧化鋁週期性
★ 含氫矽薄膜太陽電池材料之光電特性研究★ 自我複製結構膜光學性質之研究
★ 溫度及應力對高密度分波多工器(DWDM)濾光片中心波長飄移之研究★ 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究
★ 以奈米小球提升矽薄膜太陽能電池吸收之研究★ 定光電流量測法在氫化矽薄膜特性的研究
★ 動態干涉儀量測薄膜之光學常數★ 反應式濺鍍過渡態矽薄膜之研究
★ 光子晶體偏振分光鏡之設計與製作★ 偏壓對射頻濺鍍非晶矽太陽能薄膜特性之研究
★ 負折射率材料應用於抗反射與窄帶濾光片之設計★ 負電荷介質材料在矽晶太陽電池之研究
★ 自我複製式偏振分光鏡製作與誤差分析★ 以光激發螢光影像量測矽太陽能電池額外載子生命期及串聯電阻分佈之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在探討以矽硼合金靶應用於濺鍍製程製作異質接面太陽能電池的可行性。濺鍍製程方式對於環境較友善,且於製程中不需要通有毒氣體,機台維護成本相對化學氣象沉積方式也來低,故本研究選用濺鍍的方式。然而濺鍍製程方式相較於化學氣象沉積方式薄膜摻雜果較差,使得薄膜電性不好,為了要改善以上情況濺鍍製程方式需要更多的摻雜才可達成。由文獻提到,濺鍍P-type矽薄膜時可於矽靶上放置硼顆粒提高薄膜的摻雜。故本實驗室團隊原先也是採用此方式幫助薄膜摻雜,應用於異質接面太陽能電池的製作。在本實驗室團隊多年來的努力之下,此製程方式有不錯的成果進展,然而此方式尚有製程穩定性、均勻性等因素考量。故本實驗團隊決定將優化的硼顆粒擺放方式應用於矽硼合金靶製作,看是否能改善以上缺點且製作出效率不錯的元件。
經過不斷修正本實驗最終使用三種不同濃度的矽硼合金靶分別鍍製P-type矽薄膜做薄膜特性的分析,以及應用於異質接面太陽能電池的製作。本研究結果以矽硼合金靶濃度(Si:wt90.7% B:wt9.3%)製作元件,元件有最佳的效率可達11.76%、開路電壓524mV、短路電流31.5 mA/cm2 與填充因子(FF)71%。
摘要(英) The aim of this research is the fabrication of P-type hydrogenated silicon thin films and silicon heterojunction solar cells by using silicon boron target. A sputtering process produces less environmental pollution and costs less fabrication cost than a CVD process. In addition, the sputtering process is a nontoxic process. So we use sputtering method to fabricate solar cells in our research. However, the disadvantage of PVD sputtering process is low doping efficiency resulting in poor electrical properties for P-type silicon thin film. It has been reported that to improve the doping efficiency , the more dopant such as boron grains placed on silicon target is necessary. In this research, the same method was applied to manufacture heterojunction solar cells. The heterojunction solar cells can achieve good efficiency, however there are still some problems such as the stability and the uniformity. To overcome the problems the silicon target with boron grains was replaced by silicon boron alloy to manufacture heterojunction solar cells.
In this research, three different concentrations of silicon boron alloy targets were used to deposit the P-type silicon thin films, and manufacture heterojunction solar cells. The results show that the best device performance was achieved with conversion efficiency 11.76%, open-circuit voltage 524 mV, short-circuit current 31.5 mA/cm2, and fill factor 71% by silicon boron alloy target(Si:wt90.7% B:wt9.3%).
關鍵字(中) ★ 氫化P矽薄膜
★ 異質接面太陽能電池
★ 矽硼合金靶
關鍵字(英) ★ P type Hydrogenated Silicon Thin Films
★ Heterojunction Solar Cell
★ Silicon-Boron alloy target
論文目次 第一章 緒論 1
1.1前言 1
1.2文獻回顧 1
1.3研究動機與規劃 4
1.4本論文章節編排 6
第二章 基本理論 8
2.1太陽能電池原理 8
2.2矽異質接面太陽能電池 11
2.3電漿與濺鍍製程方式介紹 12
第三章 研究工具與分析 14
3.1薄膜光學特性量測與分析 14
3.1.1吸收係數計算 14
3.1.2光學能隙計算 14
3.2薄膜電性以及摻雜程度量測 15
3.2.1 暗導電率量測 15
3.2.2 活化能量測 16
3.3 薄膜結構與膜內氫含量分析 18
3.3.1傅式轉換紅外線光譜儀量測原理 18
3.3.2 傅式轉換紅外線光譜儀分析膜內矽氫鍵結 19
3.3.3 傅式轉換紅外線光譜儀分析膜內氫含量CH 20
第四章 硼摻雜方法比較 22
4.1硼顆粒放置矽靶介紹 22
4.2 矽硼合金靶介紹 23
4.3 P型矽薄膜空間均勻性分析 25
第五章 P型氫化矽薄膜分析 28
5.1實驗設備與製程流程 28
5.2 實驗參數與實驗量測介紹 29
5.3 矽硼合金靶(Si:wt90.7% B:wt9.3%) 31
5.3.1 光學特性分析 31
5.3.2 電性與摻雜程度分析 37
5.3.3結構與組成成份分析 39
5.4矽硼合金靶(Si:wt97% B:wt3%) 45
5.4.1光學特性分析 45
5.4.2電性與摻雜程度分析 49
5.4.3結構與組成成份分析 51
5.5 矽硼合金靶(Si:wt99% B:wt1%) 57
5.5.1光學特性分析 57
5.5.2電性與摻雜程度分析 61
5.5.3結構與組成成份分析 64
5.6 不同靶材濃度對薄膜特性比較 70
5.6.1薄膜SIMS二次離子質譜儀膜內元素分析比較 70
5.6.2光學特性分析比較 74
5.6.3薄膜暗導電率與活化能值比較 78
5.6.4薄膜氫含量與薄膜微結構因子值比較 82
第六章 異質接面太陽能電池製作 85
6.1 元件製作流程說明 85
6.2矽硼合金靶(Si:wt90.7% B:wt9.3%)元件特性分析 89
6.3矽硼合金靶(Si:wt97% B:wt3%)元件特性分析 97
6.4 矽硼合金靶(Si:wt99% B:wt1%)元件特性分析 103
6.5不同摻雜濃度靶材之元件特性分析 109
6.6本章結論 114
第七章 結論與未來展望 116
參考文獻 119
參考文獻 [1.1] K. Wakisaka, M. Taguchi, T. Sawada, M. Tanaka, T. Matsuyama, T. Matsuoka, S. Tsuda, S. Nakano, Y. Kishi, Y. Kuwano, “More than 16% solar cells with a new `HIT′ (doped a-Si/nondoped a-Si/crystalline Si) structure”, Photovoltaic Specialists Conference, 1991., Conference Record of the Twenty Second IEEE, 2, 887, (1991)
[1.2] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer”, IEEE Journal of Photovoltaics, 4, 96, (2014)
[1.3] Solarserver: Panasonic achieves new record with 25.6% efficient HIT solar PV
cell. 2014年4月,取自http://www.solarserver.com/solar-magazine/solar-news/current/2014/kw15/panasonic-achieves-new-record-with-256-efficient-hit-solar-pv-cell.html
[1.4] M. H. Brodsky, R. S. Title, K. Weiser and G. D. Pettit, “Structural, optical, andelectrical properties of amorphous silicon films”, Phys. Rev. B. 1, 2632, (1970)
[1.5] T. D. Moustakas and R. Friedman, “Amorphous silicon p-i-n solar cells fabricated byreactive sputtering”, Appl. Phys. Lett. 40, 515, (1982)
[1.6] T. D. Moustakas, “Method for sputtering a PIN microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets”, in US 4508609 A, ed, (1983)
[1.7] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto, and T. Meguro, “P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering”, Phys. B Condensed Matter, 308, 257, (2001)
[1.8] M. M. de Lima, F. L. Freire, and F. C. Marques, “Boron doping of hydrogenated amorphous silicon prepared by rf-co-sputtering”, Brazilian J. Phys., 32, 379, (2002)
[1,9] W. L. Patterson, G. A. Shirn, “The Sputtering of Nickel Chromium Alloys”, J. Vac. Sci.Technol., 4, 343, (1967)
[1.10] J. C. Williams, W. R. Silnclair, S. E. Koonce, “Preparation of Thin Mullite Films”, J.Amer. Ceramic Soc, 46, 161, (1963)
[1.11] 何偉豪,「應用銅銦鎵三元合金靶材於銅銦鎵硒薄膜之研究」國立臺北科技大學製造科技研究所碩士論文,(2011)
[2.1] 馬丁格林(Martin A..Green) 著,太陽電池工作原理、技術與系統應用,曹昭陽等譯,台北,五南圖書股份有限公司,Aug 2009.
[2.2] 施敏著,半導體元件物理與製作技術,第二版,黃調元譯,台北,高立圖書有限公司,Sep 2003.
[2.3] T. Markvart, L. Castañer, Practical Handbook of Photovoltaics: Fundamentals and Applications, Elsevier, Oxford, 543, (2003)
[2.4] D. L. Staebler, C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett., 31, 292, (1977)
[2.5] 國科會精密儀器發展中心,真空技術與應用,全華科技圖書股份有限公司,台北市,民國九十三年。
[2.6] J. I. Lodge, R. W. Stewart, “Studies in high frequency discharges", Canadian J. Res, 26a, 205, (1948)
[2.7] P. D. Davidse, L. I. Maissel, “Dielectric thin films through RF sputtering”, J. Appl. Phys., 37, 574, (1966)
[3.1] Y. Hishikawa, N. Nakamura, S. Tsuda, “Interference - Free Determination of the 37 Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films”, Jpn. J. Appl. Phys., 30, 1008, (1991)
[3.2] J. Tauc, Amorphous and liquid Semiconductors, Plenum Press, (1974)
[3.3] 陳柏丞,「非(微)晶矽薄膜太陽能電池之能隙結構研究」,國立中央大學光電科學研究所碩士論文, (2011)
[3.4] B. C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, CRC press, (1996).
[3.5] HORIBA 傅立葉轉換紅外線光譜儀(FTIR)使用手冊。
[3.6] T. D. Moustakas, “Sputtered hydrogenated amorphous silicon”, J. Electro. Mater., 8, 391, (1979)
[3.7] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford, N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Phy. Rev. B, 45, 13367, (1992)
[4.1] 王宣文,「以濺鍍法製作矽異質接面太陽能電池之硏究 : 矽薄膜特性對元件效率的影響」,國立中央大學光電科學硏究所博士論文,(2012)
[4.2] M. M. D. Lima Jr., F. C. Marques, “On the doping mechanism of boron-doped
hydrogenated amorphous silicon deposited by rf-co-sputtering”, J. Non-Cryst. Solids, 299, 605, (2002)
[4.3] 王佑庭,「以濺鍍法與表面鈍化處理製作矽異質接面太陽能電池」國立中央大學光電科學硏究所,(2013)
[5.1] L. Wang, W. Wang, J. Huang, Y. Zeng, R. Tan, W. Song,andJ. Chen, "Argon ion beam assisted magnetron sputtering deposition of boron-doped a-Si:H thin films with improved conductivity", J. Non-Crys. Solids, 378, 177, (2013)
[5.2] J. I. Pankvoe, Optical Processes in Semiconductors.(Dover, New York, 1971).
[5.3] G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, and B. Brooks,“Optical
characterization of amorphous silicon hydride films”, Sol. Cells, 2, 277, (1980)
[5.4] D. Jousse, E. Bustarret, A. Deneuville and J. P. Stoquert, “Rf-sputtered B-doped a-Si:H and a-Si-B-H alloys”, Phys. Rev. B., 34, 7031, (1986)
[5.5] 吳哲賢,「偏壓式磁控濺鍍法製作矽異質接面太陽能電池之研究」,國立中央大學光電科學硏究所碩士論文 (2013)
[5.6] Y. Hishikawa, N. Nakamura, S. Tsuda, S. Nakano, Y. Kishi, and Y. Kuwano, "Interference-free determination of the optical absorption coefficient and the optical gap of amorphous silicon thin films," Jpn. J. Appl Phys. Part1Reg. Pap. Short Notes & Rev. Papers, 30, 1008, (1991)
[5.7] 鄧旭軒,「以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之硏究」,國立中央大學光電科學硏究所碩士論文,(2008)
[6.1] E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, "Unusually Low Surface-Recombination Velocity on Silicon and Germanium Surfaces", Phys. Rev. Lett, 57, 249, (1986)
[6.2] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 39)," Pro. Photovol. Res. Appl., 20, 12, (2012)
指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2014-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明