博碩士論文 100226008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.144.251.232
姓名 李展進(Chan-chin Li)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以奈米球微影術製作表面電漿增強拉曼基板
(Surface enhanced Raman active substrate fabricated by nanosphere lithographic technique)
相關論文
★ 以側磨光纖半塊材耦合器激發微米球型共振腔基模之研究★ 以氬離子雷射對玻璃材料加工之研究
★ 以裸光纖激發球共振腔之共振譜研究★ 錐狀平面波導光柵結構與微米小球共振腔之光耦合效率研究
★ 溶膠凝膠法合成以鉭元素為基礎的全固態電致變色元件★ S型彎曲波導與微米小球共振腔之光耦合效率研究
★ 錐狀光纖與微米球共振腔耦合之研究與應用★ 以鎖模鈦藍寶石飛秒雷射雙光子聚合製作光波導微結構之研究
★ 利用光子晶體的能隙邊緣移動達成全光開關之研究★ 利用繞射圖形檢測錐狀光纖的製造與品質
★ 利用雙光子聚合技術製作高耦合效率波導陣列光纖耦合器★ 光學印刷電路板之製作與特性分析
★ 鈉鉀離子交換波導之製作及其表面消逝波之研究★ 拉伸式長週期光纖光柵的模態色散現象研究
★ 可調式窄頻液晶濾波器★ 基於D形光纖之拉曼感測器模擬與設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文以奈米球微影術製作週期性銀粒子陣列之表面增強拉曼散射基板。首先藉由文獻得知改變週期性銀粒子的大小、結構高度及形狀等各類製程參數,其共振波長位移之趨勢。實驗上以加熱基板的方式,使銀粒子形狀改變並量測其吸光譜,得到共振波長紅移並與文獻相符;另外選用銀粒子陣列共振波長與綠光雷射波長相近的位置進行拉曼量測,且明顯得到R6G分子的拉曼光譜訊號,證明此結構有足夠的增強能力且適用於分子檢測上;最後利用TCSPC系統量測R6G在不同基板上的螢光生命期並探討其與增強係數的關係
摘要(英) Surface enhanced Raman scattering (SERS) active silver periodic particle array (PPA) substrates are fabricated by nanosphere lithographic technique. Base on the reported results in literatures, the shift of plasmon resonance wavelength can be manipulated via varying the fabrication parameters such as particle size, thickness and shape. Experimentally, thermally induced shape change was observed which results in the red shift of the resonant wavelength. The result is in close agreement with that obtained by Van Duyne. In addition, a local site on the PPA with resonance wavelength close to =532 nm was chosen to examine the resonant Raman response from model molecule Rhodamine 6G (R6G). The measured Raman spectrum, clearly reveals the vibrational fingerprint of the R6G molecule, demonstrating the enhancement capability of the fabricated substrate for molecular analysis substrate. Finally, fluorescence life time measurement of R6G on various substrates was conducted by TCSPC system, with the aim to justify the interplay between substrate quenching effect and the enhancement factor of R6G.
關鍵字(中) ★ 奈米球微影術
★ 周期性銀粒子陣列
★ 表面增強拉曼散射
★ 表面電漿共振
關鍵字(英) ★ nanosphere lithographic technique
★ periodic particle array
★ Surface Enhanced Raman Scattering
★ Surface Plasmon Resonance
論文目次 中文摘要 I
Abstract II
誌謝 III
目錄 i
圖目錄 iii
表目錄 v
第一章 緒論 1
1.1 前言 1
1.2 拉曼散射 3
1.3 表面增強拉曼散射 5
1.4 微影技術 6
1.5 研究動機與目的 8
1.6 論文架構 9
第二章 研究方法 10
2.1 表面電漿共振 10
2.1.1 金屬與介電質介面之表面電漿波 11
2.1.2 金屬粒子之局域性表面電漿 14
2.2 局域性表面電漿共振之光學特性 18
2.3 增強係數 23
第三章 樣品製作與實驗架構 24
3.1 樣品之製作與量測流程 24
3.2 奈米球週期性陣列遮罩之製備 25
3.3 金屬銀奈米粒子之製作與消光譜之量測 27
3.4 拉曼訊號量測架構 31
3.5 時間解析螢光光譜架構 32
第四章 結果與討論 34
4.1 Periodic Particle Array(PPA)結構之加熱實驗 34
4.2 不同消光譜位置之R6G拉曼散射譜 36
第五章 結論與未來展望 43
參考文獻 44
參考文獻 [1] P.C. Lauterbur, "Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance". Nature. 242(5394), p. 190-191, 1973
[2] C.V. RAMAN and K.S. KRISHNAN, "A new type of secondary radiation". Nature. 121(3048), p. 501-502, 1928
[3] M. Fleischmann, P.J. Hendra, and A.J. McQuillan, "Raman spectra of pyridine adsorbed at a silver electrode". Chem. Phys. Lett. 26(2), p. 163-166, 1974
[4] D.L. Jeanmaire and R.P. Van Duyne, "Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode". J. Electroanal. Chem. 84(1), p. 1-20, 1977
[5] M.G. Albrecht and J.A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode". J. Am. Chem. Soc. 99(15), p. 5215-5217, 1977
[6] U.C. Fischer and H.P. Zingsheim, "Submicroscopic pattern replication with visible light". J. Vac. Sci. Technol. 19(4), p. 881-885, 1981
[7] H.W. Deckman and J.H. Dunsmuir, "Natural lithography". Appl. Phys. Lett. 41(4), p. 377-379, 1982
[8] J.C. Hulteen and R.P. Van Duyne, "Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces". J. Vac. Sci. Technol., A. 13(3), p. 1553-1558, 1995
[9] P.N. Bartlett, et al., "Optical properties of nanostructured metal films". Faraday Discuss. 125(0), p. 117-132, 2004
[10] C. Farcau and S. Astilean, "Probing the unusual optical transmission of silver films deposited on two-dimensional regular arrays of polystyrene microspheres". J. Opt. A: Pure Appl. Opt. 9(9), p. S345, 2007
[11] T.R. Jensen, et al., "Nanosphere Lithography:  Tunable Localized Surface Plasmon Resonance Spectra of Silver Nanoparticles". J. Phys. Chem. B. 104(45), p. 10549-10556, 2000
[12] R.W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum". Philos. Mag. Ser. 6. 4(21), p. 396-402, 1902
[13] R.W. Wood, "Diffraction gratings with controlled groove form and abnormal distribution of intensity". Philos. Mag. Ser. 6. 23(134), p. 310-317, 1912
[14] R.H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films". Phys. Rev. 106(5), p. 874-881, 1957
[15] E. Kretschm and H. Raether, "Radiative decay of nonradiative surface plasmon excited by light". Z.Naturf. 23(A), p. 2135-2136, 1968
[16] A. Otto, "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection". Z. Phys. 216(4), p. 398-410, 1968
[17] K.A. Willets and R.P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy and Sensing". Annu. Rev. Phys. Chem. 58(1), p. 267-297, 2007
[18] G. Mie, "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen". Ann. Phys. (Berlin). 330(3), p. 377-445, 1908
[19] K.A. Willets and R.P. Van Duyne, "Localized Surface Plasmon Resonance Spectroscopy and Sensing [Supplemental Material]". Annu. Rev. Phys. Chem. 58(1), p. 267-297, 2007
[20] S. Link and M.A. El-Sayed, "Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods". J. Phys. Chem. B. 103(40), p. 8410-8426, 1999
[21] R. Gans, "Über die Form ultramikroskopischer Silberteilchen". Ann. Phys. (Berlin). 352(10), p. 270-284, 1915
[22] T.R. Jensen, G.C. Schatz, and R.P. Van Duyne, "Nanosphere Lithography:  Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling". J. Phys. Chem. B. 103(13), p. 2394-2401, 1999
[23] Modified by [11]
[24] P. Hildebrandt and M. Stockburger, "Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver". J. Phys. Chem. 88(24), p. 5935-5944, 1984
[25] E.C. Le Ru, et al., "Surface Enhanced Raman Scattering Enhancement Factors:  A Comprehensive Study". J. Phys. Chem. C. 111(37), p. 13794-13803, 2007
[26] S. Shim, C.M. Stuart, and R.A. Mathies, "Resonance Raman Cross-Sections and Vibronic Analysis of Rhodamine 6G from Broadband Stimulated Raman Spectroscopy". Chemphyschem. 9(5), p. 697-699, 2008
[27] N. Denkov, et al., "Mechanism of formation of two-dimensional crystals from latex particles on substrates". Langmuir. 8(12), p. 3183-3190, 1992
[28] P.A. Kralchevsky and N.D. Denkov, "Capillary forces and structuring in layers of colloid particles". Curr. Opin. Colloid Interface Sci. 6(4), p. 383-401, 2001
[29] W. Becker, The bh TCSPC Handbook. 5th Edition ed. Berlin: Becker & Hickl GmbH, 2012
指導教授 戴朝義(Chao-yi Tai) 審核日期 2014-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明