博碩士論文 101233001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.189.14.219
姓名 張言溥(Yen-Pu Chang)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究
(Study of functions of MAPK signaling pathway related microRNAs in melanoma cells)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究★ 探討miR-567在黑色素細胞瘤中的調控機制
★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記
★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究★ 研究牛樟芝萃取物 CCM111 的作用機制
★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究
★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究★ 微型核糖核酸成為放射線治療的預後生物標記之研究
★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標★ microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究
★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤★ 包覆性腹膜硬化症相關miRNAs在腹膜纖維化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 先前的研究指出,大約有50-70%的黑色素瘤包含BRaf基因的突變,其中80%是V600E的取代突變,這個突變持續性地誘導MAPK/ERK訊息傳導路徑的活化也造成癌症的惡性表現型。很多訊息傳導路徑被發現會被微型RNA調控;然而,微型RNA、黑色素瘤與MAPK路徑之間的關聯性尚不明確。從先前微陣列晶片實驗和GEO資料庫篩選出與MAPK相關的微型RNA。為了更深入的研究,未來將會實施動物實驗。闡明微型RNA在黑色素瘤中的角色可能可以提供其作為癌症生物標記或微型RNA的標靶治療。
摘要(英) It has been reported that approximately 50-70% of melanoma samples contain BRaf mutations, 80% of which is V600E. The mutation constitutively induces high activity in MAPK/ERK signaling pathway and causes malignant phenotypes of cancers. MAPK/ERK signaling may be modulated by microRNA (miRNA); however, correlations between miRNA, melanoma and MAPK/ERK pathway are still unclear. We screen out MAPK-related miRNA from the prior microarray results and GEO data analysis. For further investigation, experiments should be performed in vivo in the future. Elucidating the role of miRNAs in melanoma may provide as biomarkers or a miRNA-targeting therapy for cancers.
關鍵字(中) ★ MAPK 訊息傳導路徑
★ 微型RNA
★ 黑色素瘤
關鍵字(英) ★ MAPK signaling pathway
★ microRNA
★ Melanoma
論文目次 Abstract in Chinese i
Abstract in English ii
Abbreviation list iii
Acknowledgements iv
Table of contents v
List of tables viii
List of figures viii
I. INTRODUCTION 1
1. miRNA (microRNA) 1
1.1 Biogenesis of miRNA 1
1.2 Mechanisms of miRNA regulation 2
2. miRNA dysregulation in cancer 3
3. MAPK/ERK signaling pathway and human cancer 4
4. Melanoma 6
5. Genetic defects and target therapy of melanoma 7
6. Significance and purpose of the study 7

II. MATERIALS AND METHODS 9
1. Materials 9
1.1 Cell lines 9
1.2 miRNA (microRNA) mimics 9
1.3 Plasmids 10
1.4 Antibodies 10
2. Methods 11
2.1 miRNA mimic transfection 11
2.2 Cell proliferation assay – Alamar blue 11
2.3 Cell proliferation assay – Colony formation assay 11
2.4 Transwell assay 12
2.5 Wound healing assay 12
2.6 Soft agar assay 13
2.7 Construction of miRNA Stable clones 13
2.8 GEO data analysis 14
2.9 Preparation of protein extracts 14
2.10 Western blot analysis 15
2.11 Data process software and hardware 16

III. RESULTS 17
1. Screen miRNAs which is related to MAPK signaling pathway by microarray and GEO data 17
2. Overexpression of MAPK-related miRNAs reduce MAPK signaling pathway activity 18
3. Overexpression of MAPK-related miRNAs cause down-regulation of MAPK signaling pathway activity 18
4. MAPK-related miRNAs induce cell apoptosis and cause cell cycle arrest 19
5. MAPK-related miRNAs decrease cancer cell proliferation 20
6. MAPK-related miRNAs repress anchorage-independent growth
21
7. MAPK-related miRNAs inhibit cell migratory ability 21
8. Stable-expressed MAPK-related miRNAs inhibit cell migration
22 
IV. DISCUSSION 23
1. miRNA affect cell signaling pathways 23
2. miRNA influence cancer cells progress 23
3. Studies related to our MAPK-related miRNAs 24
4. Future aspect 25

V. REFERENCES 26
Tables 29
Figures 32
參考文獻 1. Sun, W., et al., microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng, 2010. 12: p. 1-27.
2. Doench, J.G. and P.A. Sharp, Specificity of microRNA target selection in translational repression. Genes Dev, 2004. 18(5): p. 504-11.
3. Lewis, B.P., C.B. Burge, and D.P. Bartel, Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005. 120(1): p. 15-20.
4. He, L. and G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nature Reviews Genetics, 2004. 5(7): p. 522-531.
5. Zhang, L., et al., microRNAs exhibit high frequency genomic alterations in human cancer. Proceedings of the National Academy of Sciences, 2006. 103(24): p. 9136-9141.
6. Zhang, Y., P. Yang, and X.F. Wang, Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol, 2014. 24(3): p. 153-60.
7. Kosaka, N., H. Iguchi, and T. Ochiya, Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci, 2010. 101(10): p. 2087-92.
8. Mirna Therapeutics, I. Pipeline. June 30, 2014]; Available from: http://www.mirnatherapeutics.com/___Pipeline/Pipeline.aspx.
9. Zhang, W. and H.T. Liu, MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res, 2002. 12(1): p. 9-18.
10. Schulze, W.X., L. Deng, and M. Mann, Phosphotyrosine interactome of the ErbB-receptor kinase family. Mol Syst Biol, 2005. 1: p. 2005 0008.
11. Gray-Schopfer, V., C. Wellbrock, and R. Marais, Melanoma biology and new targeted therapy. Nature, 2007. 445(7130): p. 851-857.
12. Montagut, C. and J. Settleman, Targeting the RAF-MEK-ERK pathway in cancer therapy. Cancer Lett, 2009. 283(2): p. 125-34.
13. (NCI), N.C.I. Melanoma Treatment (PDQ®). June 30, 2014]; Available from: http://www.cancer.gov/cancertopics/pdq/treatment/melanoma/Patient.
14. UK, C.R. Skin cancer incidence statistics. June 30, 2014]; Available from: http://www.cancerresearchuk.org/cancer-info/cancerstats/types/skin/incidence/uk-skin-cancer-incidence-statistics.
15. foundation, S.c. Guide to Staging-Melanoma. June 30, 2014]; Available from: http://www.skincancer.org/skin-cancer-information/melanoma/the-stages-of-melanoma/guide-to-staging-melanoma.
16. Parkin, D.M., et al., Global Cancer Statistics, 2002. CA: A Cancer Journal for Clinicians, 2005. 55(2): p. 74-108.
17. Siegel, R., D. Naishadham, and A. Jemal, Cancer statistics, 2013. CA Cancer J Clin, 2013. 63(1): p. 11-30.
18. Linos, E., et al., Increasing burden of melanoma in the United States. J Invest Dermatol, 2009. 129(7): p. 1666-74.
19. Davies, H., et al., Mutations of the BRAF gene in human cancer. Nature, 2002. 417(6892): p. 949-954.
20. Maldonado, J.L., et al., Determinants of BRAF Mutations in Primary Melanomas. Journal of the National Cancer Institute, 2003. 95(24): p. 1878-1890.
21. Lovly, C.M., et al., Routine Multiplex Mutational Profiling of Melanomas Enables Enrollment in Genotype-Driven Therapeutic Trials. PLoS ONE, 2012. 7(4): p. e35309.
22. Roberts, P.J. and C.J. Der, Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 2007. 26(22): p. 3291-3310.
23. Kwong, L.N. and M.A. Davies, Targeted therapy for melanoma: rational combinatorial approaches. Oncogene, 2014. 33(1): p. 1-9.
24. MedlinePlus. Vemurafenib. June 30, 2014]; Available from: http://www.nlm.nih.gov/medlineplus/druginfo/meds/a612009.html.
25. Lito, P., et al., Relief of Profound Feedback Inhibition of Mitogenic Signaling by RAF Inhibitors Attenuates Their Activity in BRAFV600E Melanomas. Cancer Cell, 2012. 22(5): p. 668-682.
26. miRBase. Browse miRBase by species. July 3, 2014]; Available from: http://www.mirbase.org/cgi-bin/browse.pl.
27. Glud, M. and R. Gniadecki, MicroRNAs in the pathogenesis of malignant melanoma. J Eur Acad Dermatol Venereol, 2013. 27(2): p. 142-50.
28. Segura, M.F., et al., MicroRNA and cutaneous melanoma: from discovery to prognosis and therapy. Carcinogenesis, 2012. 33(10): p. 1823-32.
29. Kozubek, J., et al., In-depth characterization of microRNA transcriptome in melanoma. PLoS One, 2013. 8(9): p. e72699.
30. Hideshima, T. and K.C. Anderson, Molecular mechanisms of novel therapeutic approaches for multiple myeloma. Nat Rev Cancer, 2002. 2(12): p. 927-937.
31. Tesio, M. and A. Trumpp, Breaking the cell cycle of HSCs by p57 and friends. Cell Stem Cell, 2011. 9(3): p. 187-92.
32. Vaira, V., et al., microRNA profiles in coeliac patients distinguish different clinical phenotypes and are modulated by gliadin peptides in primary duodenal fibroblasts. Clin Sci (Lond), 2014. 126(6): p. 417-23.
33. Volinia, S., et al., A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(7): p. 2257-2261.
34. Guan, H., et al., Down-regulation of miR-218-2 and its host gene SLIT3 cooperate to promote invasion and progression of thyroid cancer. J Clin Endocrinol Metab, 2013. 98(8): p. E1334-44.
35. Zhang, S., et al., MicroRNA-520e suppresses growth of hepatoma cells by targeting the NF-[kappa]B-inducing kinase (NIK). Oncogene, 2012. 31(31): p. 3607-3620.
36. Endo, H., et al., Potential of tumor-suppressive miR-596 targeting LGALS3BP as a therapeutic agent in oral cancer. Carcinogenesis, 2013. 34(3): p. 560-9.
37. Anwar, S.L. and U. Lehmann, DNA methylation, microRNAs, and their crosstalk as potential biomarkers in hepatocellular carcinoma. World J Gastroenterol, 2014. 20(24): p. 7894-7913.
38. Wang, F., et al., Multiple Regression Analysis of mRNA-miRNA Associations in Colorectal Cancer Pathway. Biomed Res Int, 2014. 2014: p. 676724.
指導教授 馬念涵(Nianhan Jia-Lin Ma) 審核日期 2014-8-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明