博碩士論文 101233004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.147.52.243
姓名 詹修華(Hsiu-hua Chan)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 鑑別可應用在病理與臨床之肺腺癌與鱗狀上皮細胞肺癌的生物標記
(Identification of biomarkers for differentiating adenocarcinoma and squamous cell carcinoma of lung for pathological and clinical application)
相關論文
★ 中草藥BP004誘導管腔A型乳腺癌細胞凋亡★ 藉由微陣列基因晶片以探討中草藥BP011w對於抑制肺腺癌細胞株爬行及轉移之機制
★ 中國傳統醫藥蒙古黃耆在HCT116結腸癌細胞體外和體內實驗呈現腫瘤抑制作用★ 泰莫西芬與BP012W乙醇分離物之協同作用造成強化管狀A型乳腺癌細胞凋亡影響
★ 揭示CEP55基因在大腸直腸癌轉移中所扮演的角色★ BP016W-新型食道鱗狀上皮細胞癌候選藥物
★ 傳統中藥複方FY001W是三陰性乳腺癌新型的候選藥物★ BP023W在頭頸癌中的細胞毒性與調控機制
★ 藉由L1000?表達圖譜數據來解釋中醫分類方法中的屬性和歸經★ Solasodine,BP010W成份之一,抑制肺癌的遷移和侵襲能力
★ 蒙古黃耆對大腸癌影響並降低miR-29a的表現量之研究★ 利用生物資訊策略找出普濟方內加速傷口癒合的新配方
★ 藉助模塊化網路策略尋找普濟方之治療疾病 核心配方★ 探索 BP010W 的治療潛力:基於雌激素信號通路, 以澳洲茄胺作為抑製劑研究肺癌細胞遷移的綜合分析
★ 大數據分析糖尿病患者使用糖尿病藥物後得病因果關係和風險比較以桃園某地區醫院為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在全世界肺癌是造成癌症致死率很高的首要原因,主要型態包括小細胞肺癌(~15%)與非小細胞肺癌(~85%),非小細胞肺癌又可以分為肺腺癌, 鱗狀上皮細胞肺癌和大細胞肺癌,其中以肺腺癌在台灣佔大多數,在不同類別的肺癌裡,分別都使用不同的化療用藥,造成的副作用與預後情形也都不一樣。分化完全的肺腺癌和鱗狀上皮細胞肺癌通常只需要經由蘇木精和伊紅染色法之後經由肉眼判斷癌細胞型態與角質化與否便能有效辨別腫瘤細胞,但是分化不全的非小細胞肺癌卻很難由肉眼判斷。在病理與臨床應用上,NKX2-1與KRT5/6是目前分別被應用在輔助鑑別分化不全的非小細胞肺癌裡的肺腺癌和鱗狀上皮細胞肺癌上的病理標記。經由研究發現NKX2-1與KRT5/6目前對於在鑑別分化不全之小樣本非小細胞肺癌上效果也並不是相當成功。因此發展出能夠有效鑑別分化不全之小樣本非小細胞肺癌的生物病理標記是當前刻不容緩的研究議題。運用生物資訊與高通量篩選平台及整合功能性生物分析工具並藉由微陣列生物晶片分析及免疫染色法我們最後找出4種生物標記分別為KRT13, ADH7, CALML3和FOXA2來鑑別分化不全之小樣本非小細胞肺癌,希望在病理與臨床應用上,對於非小細胞肺癌診斷、療效評估與化學治療方法的選擇能夠有新的突破。
摘要(英) Lung cancer is the leading cause of cancer deaths in the worldwide. The main tumor type includes small cell lung cancer (SCLC ~15% of all lung cancers) and non-small cell lung cancer (NSCLC ~85% of all lung cancers), NSCLC can be classified in adenocarcinoma (AD), squamous-cell carcinoma (SCC), large-cell lung cancer (LCC). Among them, the majority of lung cancer is AD in Taiwan. The different chemotherapy therapeutic drugs can cause the different side effect and prognosis in different kind of lung cancer. Well differentiated AD and SCC can be identify effectively through tumor type or have cytokeratin or not and poorly differentiated AD and SCC is hardly to distinguish by using Hematoxylin & Eosin immunohistochemistry. In pathology and clinical application, NKX2-1 and KRT5/6 are a biomarker, applied to identify poorly differentiated AD and SCC. It is discovered that NKX2-1 and KRT5/6 identify poorly differentiated AD and SCC not very successfully by some research. Therefore, the development of biomarkers can whether effectively identify small samples of poorly differentiated NSCLC or not is currently pressing research issues. Using biological information and high-throughput platform technology, we found 4 biomarkers, including KRT13, ADH7, CALML and FOXA2, may apply to identify small samples of poorly differentiated AD and SCC. We hope it can raise a possibility for the pathology and clinical aspect in the identification of novel molecular markers for disease diagnosis, prognosis, and therapy selection.
關鍵字(中) ★ 肺腺癌
★ 鱗狀上皮細胞肺癌
★ 非小細胞肺癌
★ 分化不全
★ 生物標記
★ 免疫染色法
關鍵字(英) ★ adenocarcinoma of lung
★ squamous cell carcinoma of lung
★ non-small cell lung cancer
★ poorly differentiated
★ biomarker
★ immunohistochemistry
論文目次 Chapter 1 Introduction………………………………………………...………….……………1
Chapter 2 Method and materias…….………………………………..….……….…………….3
2.1 Microarray data analysis…………………………………………..……..……………...3
2.2 Tumor tissue samples and tissue microarray construction…………..….…….…….…...4
2.3 Immunohistochemistry and antibodies…………….………………………....…………4
2.4 Evaluation of immunohistochemical staining……………………...………...….………5
2.5 Statistical analysis…………………………….……………………………...……….....9
Chapter 3 Result…………………………………..……………………………………….….10
3.1 Microarray analysis of AD and SCC…………………………………………………...10
3.2 Immunohistochemical evaluation of candidate genes protein expression on well differentiated NSCLC……………………………………………………………………...22
3.3 Immunohistochemical evaluation of candidate genes protein expression on TMA for lung cancer…………………………………………………………………………………27
3.4 Statistic evaluation of IHC staining results on TMA for lung cancer………....……….36
Chapter 4 Discussion……..…………………………………..………………………………39
Reference…………………...……………...…………………………………………..……..42
Appendix…………………………………….……………………………………….……….45
參考文獻 1.Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D: Global cancer statistics. CA: a cancer journal for clinicians 2011, 61(2):69-90.
2.Wang B-Y, Hung J-J, Jeng W-J, Hsu W-H, Hsieh C-C, Huang M-H, Huang B-S, Liu J-S, Wu Y-C: Surgical Outcomes in Resected Non-small Cell Lung Cancer≤ 1 cm in Diameter. Journal of the Chinese Medical Association 2010, 73(6):308-313.
3.Sanchez‐Palencia A, Gomez‐Morales M, Gomez‐Capilla JA, Pedraza V, Boyero L, Rosell R, Fárez‐Vidal M: Gene expression profiling reveals novel biomarkers in nonsmall cell lung cancer. International Journal of Cancer 2011, 129(2):355-364.
4.Lu T-P, Tsai M-H, Lee J-M, Hsu C-P, Chen P-C, Lin C-W, Shih J-Y, Yang P-C, Hsiao CK, Lai L-C: Identification of a Novel Biomarker, SEMA5A, for Non–Small Cell Lung Carcinoma in Nonsmoking Women. Cancer Epidemiology Biomarkers & Prevention 2010, 19(10):2590-2597.
5.Minna JD, Gazdar AF, Sprang SR, Herz J: A bull′s eye for targeted lung cancer therapy. Science 2004, 304(5676):1458-1461.
6.Bhattacharjee A, Richards WG, Staunton J, Li C, Monti S, Vasa P, Ladd C, Beheshti J, Bueno R, Gillette M: Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proceedings of the National Academy of Sciences 2001, 98(24):13790-13795.
7.Einhorn LH: First-Line Chemotherapy for Non–Small-Cell Lung Cancer: Is There a Superior Regimen Based on Histology? Journal of Clinical Oncology 2008, 26(21):3485-3486.
8.Brown PO, Botstein D: Exploring the new world of the genome with DNA microarrays. Nature genetics 1999, 21:33-37.
9.Su L-J, Chang C-W, Wu Y-C, Chen K-C, Lin C-J, Liang S-C, Lin C-H, Whang-Peng J, Hsu S-L, Chen C-H: Selection of DDX5 as a novel internal control for Q-RT-PCR from microarray data using a block bootstrap re-sampling scheme. BMC genomics 2007, 8(1):140.
10.Kuner R, Muley T, Meister M, Ruschhaupt M, Buness A, Xu EC, Schnabel P, Warth A, Poustka A, Sültmann H: Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung cancer 2009, 63(1):32-38.
11.Shi W, Banerjee A, Ritchie ME, Gerondakis S, Smyth GK: Illumina WG-6 BeadChip strips should be normalized separately. BMC bioinformatics 2009, 10(1):372.
12.Matoso A, Mukkada VA, Lu S, Monahan R, Cleveland K, Noble L, Mangray S, Resnick MB: Expression microarray analysis identifies novel epithelial-derived protein markers in eosinophilic esophagitis. Modern Pathology 2013.
13.de Matos LL, Trufelli DC, de Matos MGL, da Silva Pinhal MA: Immunohistochemistry as an important tool in biomarkers detection and clinical practice. Biomarker insights 2010, 5:9.
14.Tarca AL, Lauria M, Unger M, Bilal E, Boue S, Dey KK, Hoeng J, Koeppl H, Martin F, Meyer P: Strengths and limitations of microarray-based phenotype prediction: Lessons learned from the improver diagnostic signature challenge. Bioinformatics 2013, 29(22):2892-2899.
15.Rousseaux S, Debernardi A, Jacquiau B, Vitte A-L, Vesin A, Nagy-Mignotte H, Moro-Sibilot D, Brichon P-Y, Lantuejoul S, Hainaut P: Ectopic activation of germline and placental genes identifies aggressive metastasis-prone lung cancers. Science translational medicine 2013, 5(186):186ra166-186ra166.
16.Der SD, Sykes J, Pintilie M, Zhu C-Q, Strumpf D, Liu N, Jurisica I, Shepherd FA, Tsao M-S: Validation of a Histology-Independent Prognostic Gene Signature for Early-Stage, Non–Small-Cell Lung Cancer Including Stage IA Patients. Journal of Thoracic Oncology 2014, 9(1):59-64.
17.Botling J, Edlund K, Lohr M, Hellwig B, Holmberg L, Lambe M, Berglund A, Ekman S, Bergqvist M, Pontén F: Biomarker discovery in Non–Small cell lung cancer: Integrating gene expression profiling, meta-analysis, and tissue microarray validation. Clinical Cancer Research 2013, 19(1):194-204.
18.Xie Y, Xiao G, Coombes KR, Behrens C, Solis LM, Raso G, Girard L, Erickson HS, Roth J, Heymach JV: Robust Gene Expression Signature from Formalin-Fixed Paraffin-Embedded Samples Predicts Prognosis of Non–Small-Cell Lung Cancer Patients. Clinical Cancer Research 2011, 17(17):5705-5714.
19.Hou J, Aerts J, Den Hamer B, Van Ijcken W, Den Bakker M, Riegman P, van der Leest C, van der Spek P, Foekens JA, Hoogsteden HC: Gene expression-based classification of non-small cell lung carcinomas and survival prediction. PloS one 2010, 5(4):e10312.
20.Irizarry RA, Hobbs B, Collin F, Beazer‐Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4(2):249-264.
21.Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP: Summaries of Affymetrix GeneChip probe level data. Nucleic acids research 2003, 31(4):e15-e15.
22.Basseres DS, D’Alò F, Yeap BY, Löwenberg EC, Gonzalez DA, Yasuda H, Dayaram T, Kocher ON, Godleski JJ, Richards WG: Frequent downregulation of the transcription factor Foxa2 in lung cancer through epigenetic silencing. Lung cancer 2012, 77(1):31-37.
23.Hamakawa H, Bao Y, Takarada M, Fukuzumi M, Tanioka H: Cytokeratin expression in squamous cell carcinoma of the lung and oral cavity: an immunohistochemical study with possible clinical relevance. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 1998, 85(4):438-443.
24.Shahdoust M, Hajizadeh E, Mozdarani H, Chehrei A: Finding Genes Discriminating Smokers from Non-smokers by Applying a Growing Self-organizing Clustering Method to Large Airway Epithelium Cell Microarray Data. Asian Pacific Journal of Cancer Prevention 2013, 14(1):111-116.
指導教授 蘇立仁(Li-jen Su) 審核日期 2014-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明