博碩士論文 102222001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.142.98.61
姓名 簡曉湄(Hsiao-mei Chien)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為
★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究★ 雜質在假晶型碳矽合金對張力之熱穩定性影響
★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應
★ Thermal stability of supersaturated carbon incorporation in silicon★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學
★ Reduction dynamics of locally oxidized graphene★ 微小游泳粒子在固定表面的聚集現象
★ Role of impurities in semiconductor: Silicon and ZnO substrate★ The growth of multilayer graphene through chemical vapor deposition
★ Characteristic of defect generated on graphene through pulsed scanning probe lithography★ non
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
天然的石墨烯在室溫下擁有高傳導速度的電子還有其近乎透明的光學特性。但是沒有能量間隙卻成為石墨烯被應用在電晶體上的一種障礙。石墨烯的能隙能透過添加奈米尺度的缺陷來修正。目前為止存在多種在石墨烯裡添加缺陷的方法。其中,原子力顯微鏡中的掃描式探針顯影技術被用來製造許多材料的奈米尺度結構,包括石墨烯。石墨烯被鋪在二氧化矽的基板上,使用探針微影製造缺陷時,我們發現在相同的負偏壓在探針上,產生的缺陷其形貌有時為突起有時為凹陷。 一般而言,探針微影會在探針與石墨烯表面之間形成水橋並產生氫氧根OH-離子。突起與凹陷形貌通常各別被解釋成碳原子的不完全的氧化與完全的氧化。碳原子的不完全氧化為sp3鍵所造成突起,完全氧化則影響碳原子與OH-汽化產生空缺的缺陷。近年來,拉曼光譜已被證實可以用來判斷石墨烯缺陷的種類,藉由D和 D’ 的強度的比例。 然而此實驗的發曼光譜顯示(ID/ID’),不管突起或凹陷的形貌,都為空缺的缺陷。微米尺度的光電子顯微鏡,也證實了在形貌為突起的缺陷中,僅有微弱的C-O鍵訊號,並且還擁有很強C-C鍵扭曲的訊號。透過拉曼光譜與光電子能譜,我們推斷造成突起形貌的原因不是因為sp3的部分氧化。關鍵因素為碳原子在室溫下因為在掃描探針微影過程中遭受到離子衝撞與汽化,產生了重新鍵結並造就了最後的形貌。
摘要(英) Abstract
Pristine graphene has demonstrated ballistic electron transport at room temperature and nearly transparency optical properties. Nevertheless, the absence of band gap in graphene sets an obstacle for its application in graphene based transistor. Band gap in graphene can be modified by introducing nano-scale defects in it. There exist several promising ways for defect introduction in graphene to date. Among them, scanning probe lithography (SPL) with atomic force microscope (AFM) is a mask-less method for fabricating nano-meter-scale structure in various materials, including graphene. With the same negative bias at the AFM probe tip, nano-meter-scale-defect protrusions or depression could be produced on graphene supported on a substrate. Conventionally, SPL process on graphene results in reaction of decomposed OH- ions and graphene in the water meniscus formed between the tip and sample surface. The protrusion and depression are usually explained in term of incomplete (non-volatile) or complete oxidation (volatile) of carbon atom in graphene, respectively. The scenario above implies that sp3 and vacancy type defects are expected to dominate in protrusion and depression structure, respectively. Recently, Raman spectroscopy has been proved to be an effective tool for probing different defect type in graphene by measuring the ratio of D and D’ intensities (ID/ID’). However, we found that both SPL structures are composed of vacancy defect from ID/ID’. Micro-Photoelectron microscopy (μ-PEM) further reveals weak presence of C-O bonding around the C 1s peak. Instead, strong distortion of C-C bonds and evidence of strain around the SPL patterns are found by both μ-RS and μ-PEM. We conclude that protrusion topography is not result of sp3 partial oxide. Rather, it is probable that room temperature recombination of distorted carbon bond after the ion impact or volatile oxidation by SPL process is the deterministic factor for resultant topography.
關鍵字(中) ★ 石墨烯
★ 結構性缺陷
★ 掃描式探針微影技術
★ 拉曼光譜
★ 光電子能譜
關鍵字(英) ★ graphene
★ structural defects
★ Scanning probe lithography
★ Micro-Raman
★ XPS
論文目次 Content

Abstract ii
List of Figures vi

1. Introduction 1
2. Background 5
2-1. Graphene background 6
2-2. CVD growth graphene 12
2-3. Structure defects in graphene 16
2.3.1 Defect types of graphene …………………………………………….17
2.3.2 Graphene defects generation ………………………… ……………..22
2.3.3 Properties of defective graphene………………… ………………….24
2-4. Atomic Force Microscopy 25
2.4.1 Principle of AFM................. .................25
2.4.1 Principle of AFM...................................……… ……………………..26
2.4.2 Operation mode of AFM…………………… ....…………………….28
2.4.3 Concept of scanning probe lithography (SPL)……...……………… .29
2.4.4 Apply SPL on silicon surface……….…………………………… ….30
2.4.5 Apply SPL on graphene....……………………….……………… ….33
2-5. Raman spectroscopy… ...38
2.5.1 Raman scattering basic concept…………………………… ………..39
2.5.2 Characteristic Raman peaks in graphene system……… …………..43
2.5.3 Disorder effects in Raman spectra of graphene…………… ………..46
2.5.4 Quantify disorder in graphene with Raman intensity analysis…… …47
2-6. PhotoElectron spectroscopy (PES) 53
2.6.1 XPS spectrum of different chemical bonding on graphene 57
3. Experimental setup and measurement method 59
3-1. Sample preparation 59
3.1.1 CVD graphene growth process....……… ……………………..60
3.1.2 Template preparation 61
3.1.3 Graphene transferring process 63
3-2. Experiment set up 64
3.2.1 Custom-built high voltage circuit 65
3.2.2 Scanning probe lithography 66
3.2.3 Raman spectroscope 68
3.2.4 X-ray photoelectron spectroscope 70
4. Result and discussion 73
4-1. Topographical difference between protrusion and depression 74
4-2. Raman spectrum analysis of graphene defects generated by SPL 76
4-3. Chemical bonding profiles of SPL patterns provided by Micro-XPS 81
4-4. High resolution images of SPL patterns 84
5. Conclusions and Future work 86
Bibliography 88
參考文獻 [1] I. L. Aleiner, K. B. Efetov, “Effect of Disorder on Transport in Graphene”, Phys. Rev. Lett, 97, 236801, 2006.
[2] E. H. Hwang, S. Adam and S. Das Sarma ,” Carrier Transport in two-Dimensional Graphene Layers”, Phys. Rev. Lett, 98, 186806, 2007.
[3] Jian-Hao Chen, W. G. Cullen, C. Jang, et al, “Defect Scattering in Graphene”, Phys. Rev. Lett, 102, 236805, 2009.
[4] Richard Balog, Bjarke Jørgensen and Louis Nilsson, et al, “Bandgap opening in graphene induced by patterned hydrogen adsorption”, Nat.Mater, 9, 315, 2010.
[5] Pablo A. Denis and Federico Iribarne, “Comparative Study of Defect Reactivity in Graphene”, J. Phys. Chem. C, 117,19048,2013.
[6] Jannik C. Meyer, C. Kisielowski, R. Erni, et al, “Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes”, Nano. Lett, 8, 3582, 2008.
[7] Jie Ma, Dario Alfè, Angelos Michaelides, et al, “Stone-Wales defects in graphene and other planar sp2-bonded materials”, Phys. Rev. B, 80, 033407, 2009.
[8] Matthias Batzill, “The surface science of graphene: Metal interfaces, CVD synthesis, nanoribbons, chemical modifications, and defects”, Surface Science Reports, 67, 83, 2012.
[9] Florian Banhart, Jani Kotakoski and Arkady V. Krasheninnikov, “Structural Defects in Graphene”, ACS Nano, 5, 1, 2011.
[10] L. Li, S. Reich, J. Robertson, “Defect energies of graphite: Density-functional calculations”, Phys. Rev. B, 72, 184109, 2005.
[11] O. Lehtinen, J. Kotakoski, A. V. Krasheninnikov, et al,” Effects of ion bombardment on a two-dimensional target: Atomistic simulations of graphene irradiation”, Phys. Rev. B, 81, 153401, 2010.
[12] Ovidiu Cretu, Arkady V. Krasheninnikov, Julio A. Rodrı´guez-Manzo, et al, “Migration and Localization of Metal Atoms on Strained Graphene”, Phys. Rev. Lett, 105, 196102, 2010.
[13] P.O. Lehtinen, A. S. Foster, A. Ayuela et al, “Magnetic Properties and Diffusion of Adatoms on a Graphene Sheet”, Phys. Rev. Lett, 91, 1, 2003.
[14] Zdeneˇk Sofer, Petr Sˇimek and Martin Pumera, ” Complex organic molecules are released during thermal reduction of graphite oxides”, Phys.Chem. Chem. Phys, 15, 9257, 2013.
[15] Phaedon Avouris, Tobias Hertel and Richard Martel, “Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication”, Appl. Phys. Lett , 71, 285, 1997.
[16] T. Teuschler, K. Mahr, S. Miyazaki, M. Hundhausen and L. Ley, “Nanometer-scale field-induced oxidation of Si (111):H by a conducting-probe scanning force microscope: Doping dependence and kinetics”, Appl. Phys. Lett, 67,3144,1995.
[17] Emmanuel Dubois and Jean-Luc Bubendorff, “Kinetics of scanned probe oxidation: Space-charge limited growth”, Journal of Applied Physics, 87, 8148, 2000.
[18] Y.-R. Ma, C. Yu, Y.-D. Yao, Y. Liou and S.-F. Lee, “Tip-induced local anodic oxidation on the native SiO2 layer of Si.111 using an atomic force microscope”, Phys. Rev. B, 64, 195324, 2001.
[19] S. Masubuchi, M. Ono, K. Yoshida, K. Hirakawa and T. Machida, “Fabrication of graphene nanoribbon by local anodic oxidation lithography using atomic force microscope”, Appl. Phys. Lett.,94, 082107, 2009.
[20] Lishan Weng, Liyuan Zhang,Yong P. Chen and L. P. Rokhinson, “Atomic force microscope local oxidation nanolithography of graphene”, Appl. Phys. Lett., 93, 093107, 2008.
[21] A.J.M. Giesbers , U. Zeitler , S. Neubeck, F. Freitag , K.S. Novoselov and J.C. Maan, “Nanolithography and manipulation of graphene using an atomic force microscope”, Solid State Communications, 147, 366, 2008.
[22] Ik-Su Byun, Duhee Yoon, Jin Sik Choi, et al, “Nanoscale Lithography on Monolayer Graphene Using Hydrogenation and Oxidation”, ACS, Nano., 5, 8, 6417, 2011.
[23] Justice M. P. Alaboson , Qing Hua Wang , Joshua A. Kellar ,et al, “Conductive Atomic Force Microscope Nanopatterning of Epitaxial Graphene on SiC(0001) in Ambient Conditions”, Adv. Mater, 23, 2181, 2011.
[24] Min-Chiang Chuang, Hsiao-Mei Chien, Yuan-Hong Chain, Gou-Chung Chi, Sheng-Wei Lee, Wei Yen Woon, Carbon, 54, 336, 2013.
[25] Dresselhaus, M.S., Dresselhaus, G.,Sugihara, K., Spain, I.L. and Goldberg,H.A., Graphite Fibers and Filaments, Springer-Verlag,Berlin,1988.
[26] Dresselhaus, M.S., Dresselhaus, G., Saito, R. and Jorio, “Raman spectroscopy of carbon nanotubes”, Phys. Rep., 409, 47, 2005.
[27] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, et al, “Raman Spectrum of Graphene and Graphene Layers”, Phys. Rev. Lett., 97, 187401, 2006.
[28] L. G. Canc ado, A. Jorio, E. H. Martins Ferreira, et al, “Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies”, Nano Lett, 11, 3190, 2011.
[29] C. Casiraghi, A. Hartschuh, H. Qian, et al, “Raman Spectroscopy of Graphene
Edges”, Nano Lett, 9, 4, 1433, 2009.
[30] Axel Eckmann, Alexandre Felten, Artem Mishchenko, et al, “Probing the Nature of Defects in Graphene by Raman Spectroscopy”, Nano Lett, 12, 3925, 2012.
[31] Axel Eckmann, Alexandre Felten, Ivan Verzhbitskiy, et al, “Raman study on defective graphene: Effect of the excitation energy, type, and amount of defects”, Phys. Rev. B., 88, 035426, 2013.
[32] A. Pirkle, J. Chan, A. Venugopal, D. Hinojos, et al, “The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2”, Appl. Phys. Lett., 99, 122108, 2011.
[33] Jeremy T. Robinson, James S. Burgess, Chad E. Junkermeier, et al, “ Properties of Fluorinated Graphene Films”, Nano Lett, 10, 3001, 2010.
[34] A Felten, A Eckmann, J-J Pireaux, R Krupke and C Casiraghi, “Controlled modification of mono- and bilayer graphene in O2, H2 and CF4 plasmas”, IOP science, 24, 35, 2013.
[35] A. K. Geim, and K. S. Novoselov, “The rise of graphene”, Nat.Mater., 6, 183, 2007.
[36] Cecilia Mattevi, Hokwon Kima, and Manish Chhowalla, “A review of chemical vapour deposition of graphene on copper”, J. Mater. Chem., 21, 3324, 2011.
[37] A. H. Castro Neto, F. Guinea, and N. M. R. Peres, ”Drawing conclusions from graphene”, Physics World, 19, 33, 2006.
[38] Saito,R., Dresselhaus, G., and Dresselhaus, M.S. Physical properties of carbon Nanotubes, Imperial College, London, 1998.
[39] K. S. Kim, Y. Zhao, H. Jang, et al,” Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature, 457, 706, 2009.
[40] Soon-Yong Kwon, Cristian V. Ciobanu, Vania Petrova, et al, “Growth of Semiconducting Graphene on Palladium ”, Nano Lett., 9, 12, 3985, 2009.
[41] Peter W. Sutter, Jan-Ingo Flege ,and Eli A. Sutter,” Epitaxial graphene on ruthenium”, Nat.Mater., 7, 406, 2008.
[42] Johann Coraux , Alpha T. N‘Diaye , Carsten Busse , and Thomas Michely,“Structural Coherency of Graphene on Ir(111)”, Nano Lett, 8, 2, 565, 2008
[43] X. Li, W. Cai, J. An, et al,” Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils”, Science, 324, 1312, 2009
[44] R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Laegsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T. G. Pedersen, P. Hofmann and L. Hornekaer,” Bandgap opening in graphene induced by patterned hydrogen adsorption”, Nat. Mater., 9, 315 , 2010.
[45] Baker, Hugh, ASM Handbook: Volume 3: Alloy Phase Diagrams, Okamoto, Hiroaki, ASM International, 2002.
[46] G. A. Lopez and E. J. Mittemeijer, “The Solubility of C in Solid Cu”,Scr. Mater., 51, 1, 2004.
[47] T. P. Ong, F. Xiong, R. P. H. Chang and C. W. J. White,” Nucleation and Growth of Diamond Carbon-implanted Single Crystal Cooper Surfaces”, J. Mater. Res., 7, 2429, 1992.
[48] L. Constant, C. Speisser and F. L. Normand,” HFCVD diamond growth on Cu(111). Evidence for carbon phase transformations by in situ AES and XPS
”, Surf. Sci., 387, 28, 1997.
[49] W. Zhou, Z. Han, J. Wang, et al,” Copper Catalyzing Growth of Single-Walled Carbon Nanotubes on Substrates”, Nano Lett., 6, 2987, 2006.
[50] W. Bao, F. Miao, Z. Chen, et al,” Controlled ripple texturing of suspended graphene and ultrathin graphite membranes”, Nat. Nanotechnol., 4, 562, 2009.
[51] J. B. Nelson and D. P. Riley, ” The thermal expansion of graphite from 15°c. to 800°c.: part I. Experimental”, Proc. Phys. Soc., 57, 477,1945.
[52] Stone, A. J. and Wales, D. J., ” Theoretical Studies of Icosahedral C60 and Some Related Species” Chem. Phys. Lett., 128, 501, 1986.
[53] Yazyev, O. V., Tavernelli, I., Rothlisberger, U., et al,“Early Stages of Radiation Damage in Graphite and Carbon Nanostructures: A First-Principles Molecular Dynamics Study”, Phys. Rev. B, 75, 115418, 2007.
[54] Kotakoski, J., Jin, C. H., Lehtinen, O., Suenaga, K., and Krasheninnikov, A. V., “Electron Knock-on Damage in Hexagonal Boron Nitride Monolayers.”, Phys. Rev. B, 81, 113404, 2010.
[55] Krasheninnikov, A. V., Lehtinen, P. O., Foster, A. S., Nieminen, R. M., “Bending the Rules: Contrasting Vacancy Energetics and Migration in Graphite and Carbon Nanotubes.”, Chem. Phys. Lett, 418, 132, 2006.
[56] El-Barbary, A. A., Telling, R. H., Ewels, C. P., et al, “Structure and Energetics of the Vacancy in Graphite.”, Phys. Rev. B, 68, 144107, 2003.
[57] Ugeda, M. M., Brihuega, I., Guinea, F., et al, “Missing Atom as a Source of Carbon Magnetism.”, Phys. Rev. Lett., 104, 096804, 2010.
[58] Lee, Y. H., Kim and S. G., Tomanek, D.,” Catalytic Growth of Single-Wall Carbon Nanotubes: An ab Initio Study”, Phys. Rev. Lett., 78, 2393, 1997.
[59] Lehtinen, P. O., Foster, A. S., Ayuela, et al, ” Magnetic Properties and Diffusion of Adatoms on a Graphene Sheet.”, Phys. Rev. Lett., 91, 017202, 2003.
[60] Banhart, F.,” Interactions between Metals and Carbon Nanotubes: At the Interface between Old and New Materials”, Nanoscale, 1, 201, 2009.
[61] Lusk, M. T., Wu, D. T. and Car, L. D.,” Graphene Nanoengineering and the Inverse Stone_Thrower_Wales Defect”, Phys. Rev. B, 81, 155444, 2010.
[62] Jeong, B. W.,Ihm, J., Lee, G.-D.,” Stability of Dislocation Defect with Two Pentagon_Heptagon Pairs in Graphene”, Phys. Rev. B, 78, 165403, 2008.
[63] Yazyev, O. V. and Louie, S. G.,” Topological Defects in Graphene: Dislocations and Grain Boundaries”, Phys. Rev. B, 81, 195420, 2010.
[64] Koskinen, P., Malola, S. and Ha¨kkinen, H., ” Self-Passivating Edge Reconstructions of Graphene”, Phys. Rev. Lett., 101, 115502, 2008.
[65] Lahiri, J., Lin, Y., Bozkurt, P., et al, ” An Extended Defect in Graphene as a Metallic Wire”, Nat. Nanotechnol., 5, 326, 2010.
[66] Meyer, J. C., Chuvilin, A., Algara-Siller, et al,” Selective Sputtering and Atomic Resolution Imaging of Atomically Thin Boron Nitride Membranes”, Nano Lett., 9, 2683,2009.
[67] Hashimoto, A., Suenaga, K., Gloter, A., et al, ” Direct Evidence for Atomic Defects in Graphene Layers.”, Nature, 430, 870, 2004.
[68] Gass, M. H., Bangert, U., Bleloch, A. L., et al,” Free-Standing Graphene at Atomic Resolution.”, Nat. Nanotechnol, 3, 676, 2008.
[69] Rodrı´guez-Manzo, J. A. and Banhart, F.,” Creation of Individual Vacancies in Carbon Nanotubes by Using an Electron Beam of 1 Å Diameter.”, Nano Lett., 9, 2285, 2009.
[70] Lemme, M. C., Bell, D. C., Williams, et al, “ Etching of Graphene Devices with a Helium Ion Beam.”, ACS Nano, 3, 2674, 2009.
[71] Balog, R., Jørgensen, B., Nilsson, L., et al., “ Bandgap Opening in Graphene Induced by Patterned Hydrogen Adsorption.”, Nat. Mater., 9, 31, 2010.
[72] Boukhvalov, D. W., Katsnelson, M. I.,” Chemical Functionalization of Graphene with Defects.”, Nano Lett., 8, 4373, 2008.
[73] Peng, X. and Ahuja, R.,” Symmetry Breaking Induced Bandgap in Epitaxial Graphene Layers on SiC.”, Nano Lett., 8, 4464, 2008.
[74] Pedersen, T. G., Flindt, C., Pedersen, J., et al.,” Graphene Antidot Lattices:Designed Defects and Spin Qubits.”, Phys. Rev. Lett.,100, 136804, 2008.
[75] Reich, S., Maultzsch, J., Thomsen, C., et al, ”Tight- Binding Description of Graphene.”, Phys. Rev. B, 66, 035412, 2002.
[76] Coletti, C., Riedl, C., Lee, D. S., et al,” Charge Neutrality and Band-Gap Tuning of Epitaxial Graphene on SiC by Molecular Doping.”, Phys. Rev. B, 81, 235401, 2010.
[77] Biel, B., Blase, X.,Triozon and F., Roche, S.,” Anomalous Doping Effects on Charge Transport in Graphene Nanoribbons.”, Phys. Rev. Lett., 102, 096803, 2009.
[78] G. Binnig, C. F. Quate, and Ch. Gerber, “Atomic Force Microscope”, Phys. Rev. Lett., 56, 930 ,1986
[79] Luis G Rosa and Jian Liang, “Atomic force microscope nanolithography: dip-pen, nanoshaving, nanografting, tapping mode, electrochemical and thermal nanolithography”, J. Phys.: Condens. Matter, 21, 483001, 2009.
[80] Phaedon Avouris, Tobias Hertel, and Richard Martel, “Atomic force microscope tip-induced local oxidation of silicon: kinetics, mechanism, and nanofabrication ”, Phys. Rev. Lett, 71,285,1997.
[81] P. A. Fontaine, E. Dubois, and D. Stiévenard, “Characterization of scanning tunneling microscopy and atomic force microscopy-based techniques for nanolithography on hydrogen-passivated silicon”, J. Appl. Phys., 84, 1776, 1998.
[82] M. Calleja and R. García,” Nano-oxidation of silicon surfaces by noncontact atomic-force microscopy: Size dependence on voltage and pulse duration”, Appl. Phys. Lett.,76, 3427,2000.
[83] Hisham Z. Massoud, James D. Plummer, and Eugene A. Irene, “Thermal Oxidation of Silicon in Dry Oxygen Growth‐Rate Enhancement in the Thin Regime”, J. Electrochem. Soc. 132, 2685, 1985
[84] E. Dubois and J. L. Bubendorff, “Kinetics of scanned probe oxidation: Space-charge limited growth”,J. Appl. Phys. , 87, 8148, 2000
[85] M. Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim,” Energy band-gap engineering of graphene nanoribbons”, Phys. Rev. Lett. 98, 206805, 2007
[86] Malard, L.M., Pimenta, M.A., Dresselhaus, G., and Dresselhaus, “Raman spectroscopy in graphene”,M.S. Phys. Rep., 473, 51, 2009.
[87] Ado Jorio, Mildred S. Dresselhaus, Riichiro Saito, and Gene Dresselhaus,” Raman Spectroscopy in Graphene Related Systems”, Wiley-vch, 2011.
[88] Lucchese, M.M., Stavale, F., et al ,” Quantifying ion-induced defects and Raman relaxation length in graphene”, Carbon, 48, 1592,2010.
[89] Jorio, A., Lucchese, M.M., et al, “Measuring Disorder in Graphene with Raman Spectroscopy”, J. Phys. Cond. Matt., 22, 334204,2010.
[90] Pimenta, M.A., Dresselhaus, et al,” Studying disorder in graphite-based systems by Raman spectroscopy”, Phys. Chem. Chem. Phys., 9, 1276,2007.
[91] Knight, D.S. and White, W.B.,” Characterization of diamond films by Raman spectroscopy ”, J. Mater. Res., 4, 385, 1989.
[92] Cancado, L.G., Takai, K., Enoki, T., et al,” Measuring the degree of stacking order in graphite by Raman spectroscopy”, Carbon, 46, 272,2008.
[93] Tuinstra, F.; Koenig, J. L.,” Raman Spectrum of Graphite.”, J. Chem. Phys., 53, 1126,1970.
[94] Knight, D. S. and White, W. B.,” Characterization of Diamond Films by Raman Spectroscopy.”, J. Mater. Res., 4, 385, 1989.
[95] Ferrari, A. C.and Robertson, J.,” Interpretation of Raman Spectra of Disordered and Amorphous Carbon.”, Phys. Rev. B, 61, 14095, 2000.
[96] Ferrari, A. C. and Robertson, J.,” Resonant Raman Spectroscopy of Disordered, Amorphous, and Diamond-like Carbon.”, Phys. Rev. B, 64, 075414,2001
[97] Wei Wu, Qingkai Yu, Peng Peng, et al, “Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes”, IOP PUBLISHING, 23, 035603, 2012
[98] Jong-Hun Kim, Jin Heui Hwang, Joonki Suh, et al,” Work function engineering of single layer graphene by irradiation-induced defects”, Appl. Phys. Lett. 103, 171604, 2013.
指導教授 溫偉源 審核日期 2014-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明