博碩士論文 972402007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.221.4.52
姓名 劉仕彬(Shih-Bin Liu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 硫摻雜對 BiOCuSe 晶格熱膨脹與磁阻特性之影響
(Effects of S-doping on the lattice thermal expansion and magnetoresistive characteristics of BiOCuSe)
相關論文
★ 銦錫鐵氧化物稀釋磁性半導體與微粒薄膜之研究★ 高溫超導銪-釔-銅-氧化合物的磁有序及磁鬆弛探討
★ 矽材質之正本負感光二極體的製程與量測★ 鑭-鈰-鈣-錳超巨磁阻氧化物的結構與磁有序特性探討
★ 鋰離子電池材料鋰-鎳-氧化合物的結構與磁性研究★ 鋰離子電池材料鋰-錳-鈷氧化物之結構與磁性研究
★ 雜摻鐠與鑭之鐠-鋇-銅氧化合物對結構與磁性的研究與探討★ 奈米粉粒的熱縮效應
★ 零維奈米鉛粉粒超導偶合強度與粒徑關係探討★ 利用X光繞射峰形探討奈米粉末的粒徑分佈
★ 零維奈米鉛粉粒超導磁穿透深度與粒徑關係探討★ 以比熱實驗探討奈米微粒的量子能隙
★ 奈米金粉粒的原子結構及吸收光譜與粒徑關係探討★ 921斷層泥中奈米礦物微粒的探尋 與滑動時地層溫度標定
★ 鐠系與鉍系龐磁阻材料結構、電性、磁性間的互動關係研究★ Ag/PbO奈米複合材料的電子傳輸與異常磁阻探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要是透過X光繞射、電傳輸量測、巨觀磁性量測等實驗方法,來觀測硫摻雜對層狀晶體的BiOCuSe 氧硫化合物粉末,其晶格熱膨脹、磁阻與磁特性等物理特徵之影響。在這一系列的粉末化合物中,晶體結構仍維持P4/nmm 四方對稱,但晶格常數會隨著硫摻雜的增加而明顯遞減。在樣品中發現可藉由硫含量調控的熱膨脹行為,並在硫比例為10 %時,其熱膨脹係數最小。這個特殊的物理表現,來自晶體中(Bi2O2)2+ 和(Cu2Se2)2- 兩層間的電荷轉移現象。
除了硫比例為30%的樣品,實驗量測所得之電阻,均能以三維VRH傳導行為加以描述。而磁阻隨外加磁場的變化量會因溫度和硫摻雜之不同而不同,並非常見的平方增加之關係。R(T)與MR(T)圖,皆能被30%的硫劃分成兩個區域,且與銅氧離子上電子密度分佈之可變性相關。摻雜程度較分界點(x=0.3)低時,電子密度分佈會隨硫增加變化,電阻和磁阻亦隨硫增加遞減。摻雜程度高於分界點時,電子密度分佈不隨硫增加變化,電阻會再次增高,磁阻則有從正到負的變遷現象。上述之傳輸行為的改變,推測可能來自硫摻雜對傳導帶與價電帶之影響,被改變後的電子能隙是造成電阻與磁阻變化的主要原因。而在這一系列的BiOCuSe1-xSx摻雜樣品中,沒有量測到明顯的磁性變化。
摘要(英) This article reports on the observations of lattice thermal expansion, magnetoresistive characteristics, and magnetic properties in layered oxychalcogenide BiOCuSe1-xSx powder, through the x-ray diffraction, electric transport, ac magnetic susceptibility, and magnetization measurements. In those powder compounds, crystallizes still into a tetragonal P4/nmm symmetry, but the lattice constants will be suppressed by substituting the sulfur for selenium in BiOCuSe. An alterable lattice thermal expansion is achieved mainly by tuning the sulfur doping level, and this exceptional small thermal expansion will be detected when x = 0.1. Partially electronic charge transfer between (Bi2O2)2+ and (Cu2Se2)2- layers will produce the minimal thermal expansion at this special sulfur composition.
The temperature dependences of resistivity R can be described by the 3D variable range hopping conduction, except the data of x = 0.3 sample. A vicissitude of magnetoresistance (MR) can be observed from positive to negative by altering the sulfur composition, and there is significant relation with the variability of electron distribution near Cu and O ions. R(T) and MR(T) curves both can be classified into two types with the sulfur composition. This borderline between the two regions is at 30 %. We suppose this phenomenon can conjunction with the S-doping effect of conduction band and valence band. The changed energy gap leads to the variation of transport and magnetoresistive characteristics. No apparent magnetism is observed of BiOCuSe1-xSx samples.
關鍵字(中) ★ 熱膨脹
★ 磁阻
★ 硫摻雜
★ 氧硫化合物
關鍵字(英) ★ thermal expansion
★ magnetoresistance
★ Sulfur doping
★ oxychalcogenide
論文目次 Abstract in English i
Abstract in Chinese ii
Acknowledgment iii
Table of Contents iv
List of Figures vii
List of Tables xiii
Chapter 1 Introduction 1
1-1 Materials with layered tetragonal structure 1
1-1-1 Evolution of layered structure 2
1-1-2 Layered iron-based superconductor REFeAsO 4
1-2 Previous researches of unsubstituted BiOCuCh 7
1-2-1 Electronic structure and optical properties 7
1-2-2 Transport and thermoelectric properties 10
1-2-3 Magnetism and thermal expansion 14
References 17
Chapter 2 Experimental details and methods 21
2-1 Sample preparation 21
2-2 Sample characterization 22
2-2-1 X-ray diffractometer 22
2-2-2 Scanning electron microscope 24
2-2-3 Energy dispersive spectrometer 25
2-3 Magnetic measurements 28
2-3-1 Physical property measurement system 28
2-4 Transport measurements 30
2-4-1 Overview of resistivity option 30
2-4-2 Resistivity and magnetoresistance 31
References 33
Chapter 3 Theoretical Backgrounds 34
3-1 X-ray diffraction 34
3-1-1 Theory of diffraction 35
3-1-2 Details for powder diffraction 37
3-1-3 The Rietveld method 38
3-2 Thermal expansion 41
3-2-1 Thermal expansion coefficient 41
3-2-2 Physical origin of thermal expansion 43
3-3 Transport properties of material 45
3-3-1 Nearest-neighbor hopping model 45
3-3-2 Mott’s variable range hopping model 46
3-3-3 Magnetoresistance 49
3-4 Magnetic properties of material 50
3-4-1 AC magnetic susceptibility 50
3-4-2 Langevin theory of paramagnetism 53
References 55
Chapter 4 Tuneable thermal expansion 56
4-1 Classification of thermal expansion 56
4-2 Sample characterization and crystalline structure 58
4-2-1 Structural analysis 58
4-2-2 Composition and surface characterization 67
4-3 Effects of S-doping on thermal expansion of the lattice 70
4-3-1 Thermal expansion of lattice parameters 70
4-3-2 Charge transport and weak local lattice distortion 74
4-4 Magnetic independence of thermal expansion 81
4-5 Conclusions 83
References 84
Chapter 5 Transport and magnetoresistive characteristics 86
5-1 Variable range hopping conduction 86
5-2 Magnetoresistance 90
5-2-1 Crossover from positive to negative MR 90
5-2-2 Electronic charge distribution 93
5-3 Conclusions 99
References 100
Chapter 6 Magnetization and magnetic susceptibility 101
6-1 Magnetic properties from Langevin magnetization profile 101
6-2 Negligible magnetic susceptibility 104
6-3 Conclusions 106
參考文獻 Chapter 1
[1] Z.-A. Ren, G.-C. Che, X.-L. Dong, J. Yang, W. Lu, W. Yi, X.-L. Shen, Z.-C. Li, L.-L. Sun, F. Zhou, & Z.-X Zhao, Europhysics Letters 83, 17002 (2008).
[2] V. Johnson, & W. Jeitschko, J. Solid State Chem. 11, 161 (1974).
[3] H. Sprenger, J. Less-Common Met. 34, 39 (1974).
[4] L. S. Andrukhiv, L.O. Lysenko, Ya. P. Yarmolynk, & E. I. Gladyshevskii, Dopov. Akad. Nauk. Ukr. Ser. A, 645 (1975).
[5] F. Jellinek, & H. Hahn, Naturwissenschaften 49, 103 (1962).
[6] A. J. Klein Haneveld, & F. Jellinek, Rec. Trav. Chim. 83, 776 (1964).
[7] V. Johnson, & W. Jeitschko, J. Solid State Chem. 6, 306 (1973).
[8] W.B. Pearson, Z. Kristallogr. 171, 23 (1985).
[9] P. Villars, & L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd Ed., American Society for Metals, Materials Park, OH, 1991, and desk edition, 1997.
[10] M. Palazzi, C. Carcaly, & J. Flahaut, J. Solid State Chem. 35, 150 (1980).
[11] M. Palazzi, & S. Jaulmes, Acta Crystallogr. B37, 1337 (1981).
[12] P. Palazzi, C. R. Acad. Sc. Ser. II 292, 789 (1981).
[13] K. Ueda, S. Inoue, S. Hirose, H. Kawazoe, & H. Hosono, Appl. Phys. Lett. 77, 2701 (2000).
[14] H. Hiramatsu, H. Kamioka, K. Ueda, H. Ohta, T. Kamiya, M. Hirano, & H. Hosono, Phys. Stat. Sol. A 203, 2800 (2006).
[15] D. Kaczorowski, J.H. Albering, H. Noël, & W. Jeitschko, J. Alloys Compd. 216, 117 (1994).
[16] B. I. Zimmer, W. Jeitschko, J.H. Albering, R. Glaum, & M. Reehuis, J. Alloys Compd. 229, 238 (1995).
[17] J.H. Albering, & W. Jeitschko, Z. Naturforsch. 51b, 257 (1996).
[18] A. T. Nientiedt, B. I. Zimmer, P. Wollesen, & W. Jeitschko, Z. Kristallogr. Suppl. 11, 101 (1996).
[19] P.Wollesen, J.W. Kaiser, & W. Jeitschko, Z. Naturforsch. 52b, 1467 (1997).
[20] A.T. Nientiedt, W. Jeitschko, P.G. Pollmeier, & M. Brylak, Z. Naturforsch. 52b, 560 (1997).
[21] A. T. Nientiedt, & W. Jeitschko, Inorg. Chem. 37, 386 (1998).
[22] P. Quebe, L. J. Terbüchte, & W. Jeitschko, J. Alloys Compd. 302, 70 (2000).
[23] M. Reehuis, & W. Jeitschko, J. Phys. Chem. Solids 51, 961 (1990).
[24] H. Lincke, T. Nilges, & R. Pöttgen, Z. Anorg. Allg. Chem. 632, 1804 (2006).
[25] H. Lincke, R. Glaum, V. Dittrich, M. Tegel, D. Johrendt, W. Hermes, M.H. Möller, T. Nilges, & R. Pöttgen, Z. Anorg. Allg. Chem. 634, 1339 (2008).
[26] Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya, & H. Hosono, J. Am. Chem. Soc. 128, 10012 (2006).
[27] T. Watanabe, H. Yanagi, T. Kamiya, Y. Kamihara, H. Hiramatsu, M. Hirano, & H. Hosono, Inorg. Chem. 46, 7719 (2007).
[28] M. Tegel, D. Bichler, & D. Johrendt, Solid State Sci. 10, 193 (2008).
[29] Y. Kamihara, T. Watanabe, M. Hirano, & H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
[30] Z.-A. Ren, J. Yang, W. Lu, W. Yi, G.-C. Che, X.-L. Dong, L.-L. Sun, & Z.-X. Zhao, Mater. Res. Innov. 12, 1 (2008).
[31] Z.-A. Ren, W. Lu, J. Yang, W. Yi, X.-L. Shen, Z.-C. Li, G.-C. Che, X.-L. Dong, L.-L. Sun, F. Zhou, & Z.-X. Zhao, Chin. Phys. Lett. 25, 2215 (2008).
[32] T. Nomura, S.W. Kim, Y. Kamihara, M. Hirano, P.V. Sushko, K. Kato, M. Takata, A. L. Shluger, & H. Hosono, Supercond. Sci. Technol. 21, 125028 (2008).
[33] C. De la Cruz, Q. Huang, J.W. Lynn, J. Li,W. Ratcliff, L. L. Zarestky, H.A. Mook, G. F. Chen, J. L. Luo, N. L. Wang, & P. Dai, Nature 453, 899 (2008).
[34] S. Kitao, Y. Kobayashi, S. Higashitaniguchi, M. Saito, Y. Kamihara, M. Hirano, T. Mitsui, H. Hosono, & M. Seto, J. Phys. Soc. Jpn. 77, 103706 (2008).
[35] H.-H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F. J. Litterst, M. Kraken, M.M. Korshunov, I. Eremin, S.- L. Drechsler, R. Khasanov, A. Amato, J. Hamann- Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, & B. Büchner, Phys. Rev. Lett. 101, 077005 (2008).
[36] M. Tegel, I. Schellenberg, R. Pöttgen, & D. Johrendt, Z. Naturforsch. 63b, 1057 (2008).
[37] O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
[38] O. Jepsen & O. K. Z. Andersen, Phys. B. 97, 35 (1995).
[39] W. C. Sheets, E. S. Stampler, H. Kabbour, M. I. Bertoni, L. Cario, T. O. Mason, T. J. Marks, & K. R. Poeppelmeier, Inorg. Chem. 46, 10741 (2007).
[40] H. W. Eng, P. W. Barnes, B. M. Auer, & P. M. Woodward, J. Solid State Chem. 175, 94 (2003).
[41] E. S. Stampler, W. C. Sheets, M. I. Bertoni, W. Prelller, T. O. Mason, & K. R. Poeppelmeier, Inorg. Chem. 47, 10009 (2008).
[42] P. S. Berdonosov, A. M. Kusainova, L. N. Kholodkovskaya, V. A. Dolgikh, L. G. Akselrud, & B. A. Popovkin, J. Solid State Chem. 118, 74 (1995).
[43] A. Zakutayev, P. F. Newhouse, R. Kykyneshi, P. A. Hersh, D. A. Keszler, & J. Tate, Appl. Phys. A 102, 485 (2011).
[44] H. Hiramatsu, H. Yanagi, T. Kamiya, K. Ueda, M. Hirano, & H. Hosono, Chem. Mater. 20, 326 (2008).
[45] T. Ohtani, Y. Tachibana, & Y. Fujii, J. Alloys Compd. 262–263, 175 (1997).
[46] H. Ohta, S. Kim, Y. Mune, T. Mizoguchi, K. Nomura, S. Ohta, T. Nomura, Y. Nakanishi, Y. Ikuhara, M. Hirano, H. Hosono, & K. Koumoto, Nat. Mater. 6, 129 (2007).
[47] Y. Liu, L.-D. Zhao, Y.-C. Liu, J. Lan, W. Xu, F. Li, B.-P. Zhang, D. Berardan, N. Dragoe, Y.-H. Lin, C.-W. Nan, J.-F. Li, & H. Zhu, J. Am. Chem. Soc. 133, 20112 (2011).
[48] S. K. Karna, C.-H. Hung, C.-M. Wu, C.-W. Wang, W.-H. Li, R. Sankar, F.-C. Chou, & M. Avdeev, Dalton Trans. 42, 15581 (2013).
[49] S. K. Karna, C.-W. Wang, C.-M. Wu, C.-K. Hsu, D. Hsu, C.-J. Wang, W.-H. Li, R. Sankar, & F.-C. Chou, J. Phys.: condens. Matter 24, 266004 (2012).
[50] A. Ubaldini, E. Giannini, C. Senatore, & D. van der Marel, Physica C 470, S356 (2010).
[51] L. Ortenzi, S. Biermann, O. K. Andersen, I. I. Mazin, & L. Boeri, Phys. Rev. B 83, 100505(R) (2011).
[52] S. K. Karna, R. Sankar, C.-M. Wu, C.-W. Wang, D. Hsu, C.-J. Wang, F.-C. Chou, & W.-H. Li, J. Phys. Soc. Jpn. 80, SB011 (2011).
[53] S. K. Karna, W.-H. Li, C.-M. Wu, C.-W. Wang, C.-Y. Li, R. Sankar, & F.-C. Chou, J. Phys. Soc. Jpn. 82, 094705 (2013).

Chapter 2
[1] http://www.qdusa.com/sitedocs/productBrochures/mag3-07.pdf.
[2] http://www.qdusa.com/sitedocs/productBrochures/16TPPMS7.pdf.
[3] http://www.mrl.ucsb.edu/sites/default/files/mrl_docs/instruments/resPPMS.pdf.

Capter 3
[1] A. Guinier, X-ray diffraction in crystals, imperfect crystals, and amorphous bodies, W. H. Freeman & Company, San Francisco, 1963.
[2] B. E. Warren, X-ray diffraction, Dover Publications, New York, 1990.
[3] A. D. Krawitz, Introduction to diffraction in materials science and engineering, John Wiley & Sons, New York, 2001.
[4] H. M. Rietveld, Acta Crystallogr. 22, 151 (1967).
[5] H. M. Rietveld, J. Appl. Crystallography. 2, 65 (1969).
[6] R. A. Young (Eds.), The Rietveld Method, 4th Ed., Oxford University Press, New York, 2002.
[7] http://www.mx.iucr.org/iucr-top/comm/cpd/rietveld.html
[8] B. H. Toby, J. Appl. Cryst. 34, 210 (2001).
[9] A. C. Larson & R. B. von Dreele, GSAS Manual, p.167
[10] P. V. E. McClintock, and D. J. Meredith, & J. K. Wigmore, Matter at Low Temperatures, Blackie & Son, London, 1984.
[11] K. Morigaki, Physics of Amorphous Semiconductors, Chap. 7, World Scientific, Singapore, 1999.
[12] N. F. Mott, Phil. Mag. 19, 835 (1969).
[13] N. F. Mott & E. A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd Ed., Clarendon press, Oxford, 1979.
[14] R. W. Rollins, H. Küpfer, & W. Gey, J. Appl. Phys. 45, 5392 (1974).
[15] R. Singh, R. Lal, U. C. Upreti, D. K. Suri, A. V. Narlikar, V. P. S. Awana, J. Albino Aguiar, & Md. Shahabuddin, Phys. Rev. B 55, 1216 (1997).
[16] J. M. D. Coey, Magnetism and Magnetic Materials, Cambridge University Press, New York, 2010.

Chapter 4
[1] H.-M. Kagaya, & T. Soma, Solid State Commun. 85, 617 (1993).
[2] R. Douglas, & B. Ellis (Eds.), Amorphous Materials, Wiley, New York, 1970.
[3] G. Hausch, R. Bächer, & J. Hartmann, Physica B 161, 22 (1989).
[4] T. A. Mary, J. S. Evans, O. Vogt, & A.W. Sleight, Science 272, 90 (1996).
[5] R. H. Baughman & D. S. Galvao, Nature 365, 735 (1993).
[6] C. E. Guillaume, C.R. Hebd. Seances Acad. Sci. 125, 235 (1897).
[7] A. Sleight, Nature 425, 674 (2003).
[8] J. R. Salvador, F. Gu, T. Hogan, & M. G. Kanatzidis, Nature 425, 702 (2003).
[9] Y. Zhang, Z. Islam, Y. Ren, P. A. Parilla, S. P. Ahrenkiel, P. L. Lee, A. Mascarenhas, M. J. McNevin, I. Naumov, H. X. Fu, X. Y. Huang, & J. Li, Phys. Rev. Lett. 99, 215901 (2007).
[10] J. Li, W. H. Bi, W. Ki, X. Y. Huang, & S. Reddy, J. Am. Chem. Soc. 129, 14140 (2007).
[11] J. Chen, X. R. Xing, C. Sun, P. H. Hu, R. B. Yu, X. W. Wang, & L. H. Li, J. Am. Chem. Soc. 130, 1144 (2008).
[12] K. Takenaka & H. Takagi, Appl. Phys. Lett. 94, 131904 (2009).
[13] X. Song, Z. Sun, Q. Huang, M. Rettenmayr, X. Liu, M. Seyring, G. Li, G. Rao, & F. Yin, Adv. Mater. 23, 4690 (2011).
[14] T. Yokoyama & K. Eguchi, Phys. Rev. Lett. 107, 065901 (2011).
[15] X. Zhang, Y. Ren, M. Roushan, & J. Li, Eur. J. Inorg. Chem. 36, 5966 (2012).
[16] K. J. Miller, C. P. Romao, M. Bieringer, B. A. Marinkovic, L. Prisco, & M. A. White, J. Am. Ceram. Soc. 96, 561 (2013).
[17] X. G. Zheng, H. Kubozono, H. Yamada, K. Kato, Y. Ishiwata, & C. N. Xu, Nat. Nanotechnol. 3, 724 (2008).
[18] S. Iikubo, K. Kodama, K. Takenaka, H. Takagi, M. Takigawa, & S. Shamoto, Phys. Rev. Lett. 101, 205901 (2008).
[19] Y. W. Long, N. Hayashi, T. Saito, M. Azuma, S. Muranaka & Y. Shimakawa, Nature 458, 60 (2009).
[20] D. Das, T. Jacobs, & L. J. Barbour, Nat. Mater. 9, 36 (2010).
[21] P. Hu, J. Chen, J. Deng, & X. Xing, J. Am. Chem. Soc. 132, 1925 (2010).
[22] L. Sun & P. Kwon, Mater. Sci. Eng. A 527, 93 (2009).
[23] L. Sun, A. Sneller, & P. Kwon, Compos. Sci. Technol. 68, 3425 (2008).
[24] A. Poowancum, K. Matsumaru, & K. Ishizaki, J. Am. Ceram. Soc. 94, 1354 (2011).
[25] L. V. B. Diop, M. Amara, & O. Isnard, J. Phys.: Condens. Matter 25, 416007 (2013).
[26] T. Hamada & K. Takenaka, J. Appl. Phys. 111, 07A904 (2012).
[27] http://www.telegraph.co.uk/news/worldnews/australiaandthepacific/australia/4414203/Southern-Australia-endures-worst-heatwave-for-150-years.html
[28] A. C. Larson & R. B. Von Dreele, General Structure Analysis System, Report LA-UR-86-748, Los Alamos National Laboratory, Los Alamos, 1990.
[29] H. M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969).
[30] K. Ueda, H. Hiramatsu, H. Ohta, M. Hirano, T. Kamiya, & H. Hosono, Phys. Rev. B 69, 155305 (2004).
[31] G. K. White & P. J. Meeson, Experimental Techniques in Low-Temperature Physics, 4th Ed., p. 223, Oxford University Press Inc., New York, 2002.
[32] B. E. Warren, X-ray diffraction, Ch. 9.2, p. 108-111, Dover Publications, New York, 1990.
[33] N. E. Brese & M. O’Keeffe, Acta Cryst. B47, 192 (1991).
[34] S. K. Karna, W.-H. Li, C.-M. Wu, C.-W. Wang, C.-Y. Li, R. Sankar, and F. C. Chou, J. Phys. Soc. Jpn. 82, 094705 (2013).

Chapter 5
[1] B. L. Shklovskii & A. L. Efros, Electronic Properties of Doped Semiconductors, Springer-Verlag, Berlin, 1984.
[2] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, & J. Chazelas, Phys. Rev. Lett. 61, 2472 (1988).
[3] J. M. D. Coey, J. Appl. Phys. 85, 5576 (1999).
[4] M. Venkatesan, P. Velasco, J. A. Alonso, J. L. Martínez & J. M. D. Coey, J. Phys.: Condens. Matter 16, 3465 (2004).
[5] T. Block, S. Wurmehl, & C. Felser, Appl. Phys. Lett. 88, 202504 (2006).
[6] M. Saloaro, S. Majumdar, H. Huhtinen, & P. Paturi, J. Phys.: Condens. Matter 24, 366003 (2012).
[7] Y. Kopelevich, R. R. da Silva, B. C. Camargo, & A. S. Alexandrov, J. Phys.: Condens. Matter 25, 466004 (2013).
指導教授 李文献(Wen-Hsien Li) 審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明