博碩士論文 992202028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.145.188.41
姓名 林宜柔(I-Jou Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱 多重光子晶體耦合共振腔之共振模態模擬研究
相關論文
★ 應力緩衝自聚性砷化銦量子點之電場調制反射光譜★ 垂直耦合自聚性砷化銦鎵量子點之光學特性研究
★ 氮化銦鎵/氮化鎵多層量子井之光學特性研究★ 自聚性砷化銦鎵量子點之光電特性
★ 熱退火處理之量子點的能階變化及其理論計算★ 碲硒化鋅磊晶層之光學特性研究
★ 硒化鋅磊晶層之光學性質★ 氮化銦鎵卅氮化鎵多層量子井發光二極體之電性研究
★ 低溫成長氮化鎵的光電性質★ 自聚性矽鍺多層量子點光學特性研究
★ III--氮族半導體的極化電場效應★ 應力緩衝層對砷化銦量子點侷限能階之影響
★ 砷化銦量子點在二維光子晶體中共振模態之光學特性研究★ 高銦含量氮化銦鎵薄膜之光學性質研究
★ 氮化銦奈米柱之光學性質研究★ 砷化銦鎵量子點在砷化鎵多面體結構之光學性質研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) L3光子晶體微共振腔因為具有高品質因子(Quality factor)與低模態
體積(Mode volume)的優勢,在微共振腔的研究中受到重視。當共振腔
之間以消散波交換能量,能夠形成耦合共振腔,應用於高速雷射、光
波導以及光積體電路等元件,具有高度的潛能。文獻中顯示,L3共振
腔的基礎模態具有往30°方向傳播的消散波,因此本文以時域有限差分
法(FDTD),研究兩個與三個L3光子晶體共振腔以30°的排列方式下,由
基礎模態所分裂的耦合模態。
我們的結果顯示雙重光子晶體共有兩個耦合模態,波長分裂量大約
為25nm。而模態的品質因子由3200~4200,偏振角度由84°~105°。三重
共振腔共有三個耦合模態,其波長的分裂量大約20nm。因模態不同,
品質因子有2400~3600、偏振角度有108°~77°的差異。文獻中指出,將
L3共振腔的孔柱外移可以提高品質因子,因此本研究雙重光子晶體經
孔柱外移0.15個晶格常數調變後,模態品質因子最高達11300。三重共
振腔的孔柱進行外移調變,發現孔柱外移0.10個晶格常數時,模態品質
因子最高可達5600。
我們對模態做動量空間的分析,發現孔柱外移會使模態漏光區域
(Leaky region)內電場分佈比例改變,而影響模態品質因子與偏振角度
的值。
摘要(英) L3 photonic crystal micro-cavity has been interested due to the
advantages of high quality factor and low mode volume. Coupled cavity
which allowing energy transfer by evanescent wave is considered to have
potential applications to the fast laser,coupled cavity waveguide, and
photonic circuits. Previous reported have emphasized on the fundamental
mode studies of double-coupled-L3 cavity with the evanescent wave
propagated in 30°. In this work, we will study the fundamental mode
splitting of 30° propagation double-coupled-L3 cavity(DL3) and
triple-coupled-L3 cavity (TL3) by using the finite-differential-time-domain
(FDTD) calculations.
Our calculations show that DL3 cavity has two coupled modes
(bonding mode and anti-bonding mode). The wavelength splitting of these
two couple modes are about 25nm. Their quality factors are in the range of
3200 to 4200, and polarization angles are about 84° to 105°. Further
calculations showTL3 cavity has three coupled modes (one bonding mode
and two anti-bonding modes), the wavelength splitting are about 20 nm.
Theirquality factors and the polarization angles arein the range of 2400 to
3600 and 108°~ 77° respectively.
The quality factor of DL3 cavity (or TL3 cavity) could be increased by
outward-shifting the air hole beside cavity. Our calculations show that
quality factors of DL3 cavitycould be up to 11300 as the air hole shiftingfor
0.15 lattice constant. For TL3 cavity, the quality factorscould be up to5600
as the air hole shifting for 0.10 lattice constant. By monitoring the electric
field in k space, the reduction of the electric field within the leaky region
could be found as the air hole shifting outward. Such a reduction was
equivalent to less cavity loss, and it induced the increasing of quality
factor.
關鍵字(中) ★ 光子晶體
★ 耦合共振腔
★ 多重耦合共振腔
★ 共振模態
關鍵字(英) ★ Photonic Crystal
★ Coupled Cavity
★ Muti-Coupled Cavity
★ Resonance Mode
論文目次 中文摘要........................................................................................................i
目錄..............................................................................................................iv
圖目錄..........................................................................................................vi
表目錄..........................................................................................................xi
第一章簡介...................................................................................................1
1-1 光子晶體.........................................................................................1
1-2 光子晶體共振腔............................................................................5
1-3 研究動機.......................................................................................8
第二章多重光子晶體共振腔.....................................................................10
2-1 雙重L3 光子晶體共振腔............................................................ 11
2-2 三重L3 光子晶體共振腔............................................................14
第三章計算原理及方法.............................................................................17
3-1 平面波展開法(PWEM)................................................................18
3-2 時域有限差分法(FDTD) .............................................................20
3-2.1 品質因子計算方法...........................................................24
3-2.2 遠場偏振模擬...................................................................26
第四章模擬結果.........................................................................................28
4-1 單一L3 共振腔共振模態...........................................................29
4-2 雙重L3 共振腔共振模態............................................................33
4-3 三重L3 共振腔共振模態............................................................38
4-4 雙重L3 共振腔孔柱外移調變.................................................45
4-4.1 孔柱調變對品質因子的影響........................................45
4-4.2 孔柱調變與遠場偏振的關係........................................52
4-5 三重L3 共振腔孔柱外移調變....................................................57
4-5.1 孔柱調變對品質因子的影響...........................................57
4-5.2 孔柱調變與遠場偏振的關係..........................................65
第五章結論.................................................................................................72
參考資料.....................................................................................................74
附錄一.........................................................................................................76
附錄二.........................................................................................................78
附錄三.........................................................................................................79
參考文獻 [1] E. Yablonovitch,“Inhibited Spontaneous Emission in Solie-State
Physics and Electronics”, Phys. Rev. Lett. 58,2059 (1987)
[2] S. John, “Strong localization of photons in certain disorder dielectric
superlattices”, Phys. Rev. Lett. 58, 2486 (1987)
[3]盧贊文、李柏璁, “光通訊波長二維光子晶體雷射發展簡介”,物理
雙月刊(廿七卷五期)2005 年10 月
[4]F. G. Santamaria, “Nanorobotic Manipulation of Microspheres for
On –Chip Diamond Architectures”, Adv. Mater 14, 16 (2002)
[5] S. Y. Lin,“A three-dimensionalphotonic crystal operatingat infrared
wavelengths”,Nature394, 16 (1998)
[6] T. J. Karle, “Planar Photonic Crystal Coupled Cavity Waveguides”,
IEEE 8,4 (2002)
[7] M. Bayindir, “Band-dropping via coupled photonic crystalwaveguides”,
Opt. Express10,22 (2002)
[8]H Altug, “Photonic crystal nanocavity array laser”,Opt. Express13, 22
(2005)
[9]S. V. Zhukovsky, “Switchable Lasing in Multimode Microcavities”,
Phys. Rev. Lett.99, 073902 (2007)
[10]E. M. Purcell, “Spontaneous emission probabilities at radio
Frequencies”, Phys. Rev. 69, 681 (1946)
[11] K. J. Vahala, “Optical microcavities”, Nature 424, 14 (2003)
[12] T. Yoshie, “Vacuum Rabi splitting with asingle quantum dot in a
photonic crystal nanocavity”, Nature 432, 11 (2004)
[13] Y. Akahane,“High-Q photonic nanocavity in a two-dimensional
photonic crystal”, Nature425, 944 (2003)
[14] A. R. A. Chalcraft,“Mode structure of the L3 photonic crystal cavity”,
APL 90,241117 (2007)
[15] A. R. A. Chalcraft “Mode structure of coupled L3 photoniccrystal
cavities”, Opt. Express 19, 5670 (2011)
[16]K. A. Atlasov, “Large mode splitting and lasing in optimally coupled
photonic-crystal microcavities ”, Opt. Express 16, 16255 (2008)
[17]S. Declair, “Numerical analysis of coupled photonic crystal cavities”,
PNFA, 9,345 (2011)
[18]K. S. Yee, “ Numerical solution of initial boundary value problems
involving Maxwell′s equations in isotropic media”, IEEE Trans. Antennas
Propagat, 14, 302 (1966)
指導教授 徐子民(Tzu-Min Hsu) 審核日期 2014-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明