博碩士論文 100222011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.144.18.252
姓名 吳尚叡(Shang-ruei Wu)  查詢紙本館藏   畢業系所 物理學系
論文名稱 CO2冰晶光脫附之溫度效應研究
相關論文
★ 冰晶光脫附率量測★ 鋅原子在3d游離閾下光吸收絕對截面測量
★ 16K下H2O+CO2+NH3混合冰晶的光脫附反應之傅氏紅外光譜★ H2O+ CO2+ NH3 混合冰晶的光脫附質譜分析
★ 純水、純水加二氧化碳及純水加氨三種不同 冰晶在氫氣微波放電管光源照射下的總離 子脫附率★ 鎂原子與氫分子在量子干涉效應下的光譜量測
★ 鎂蒸氣中光速的變異★ UV/EUV光子對星際冰晶的光化作用
★ 氦狹窄共振線的光譜分析和鹼土族原子在直流電場下的反應★ 極性分子與非極性分子對含CH4混合冰晶光化作用之影響
★ N2 + CH4 + H2O 混合冰晶在氫氣微波放電光源照射下的光化產物★ H2S+CO與H2S+CO2混合冰晶光化作用下含硫分子之生成機制
★ VUV/EUV對類冥王星冰晶之光化作用研究★ H2O 冰晶光子作用之溫度效應研究
★ 嘧啶混合冰晶之光化作用研究★ X射線與電子能量作用下星際冰晶的化學衍化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
在太空環境中,CO2為星際間分子含量最豐富的三者之一,在原恆星中亦為追蹤化學與物理進程的重要分子,近年來對於CO2冰晶在光子的作用下如何衍化以及其中基本的衍化機制,更是積極地在進行當中,本論文遂以CO2純冰晶作為樣品的選擇,並且在溫度14 K,50 K,70 K之下完成長冰及照光的過程,目的為探討CO2冰晶在真空紫外光場照射下基本的光脫附機制以及溫度效應對於光脫附的影響;真空紫外光子則選以微波氫氣放電管作為能量來源。CO2冰晶光脫附量測上則利用兩種不同性質的量測儀器分別在兩套系統中進行研究,分別為石英晶體微量秤與傅立葉紅外光譜儀,並且都搭配四級質譜儀分析脫附物質的行為。

實驗結果顯示CO2冰晶極易在真空紫外光子的光化作用下產生CO與O2,並且脫附物質以CO為主,次之為O2,最後才是CO2。並且發現光脫附量在較低溫的CO2冰晶(14 K)中與高溫(50 K,70 K)的差異可達一個數量級之多。不管在何種溫度下CO2冰晶的光脫附行為深受光化產物所影響,由於溫度14 K下的CO2冰晶中,僅有接近表層的CO分子能脫附,因此當CO2冰晶中累積的CO增加時,脫附的CO分子數量也隨著緩緩地增加,爾後才穩定維持。隨著溫度條件改變為50 K與70 K時,光化產物CO分子除了由冰晶表層脫附外,還從CO2冰晶內層經由熱擴散至冰晶表層後脫附。然而高於50 K的CO2冰晶其結構為有序結構, 需在光化產物逐漸地生成累積下致使CO2冰晶結構破壞殆盡時,CO才得以大量的由冰晶中脫附而出。

此外,在CO可自由地從CO2冰晶中脫附的高溫實驗下(50 K,70 K),不同溫度所造成的溫度效應使CO在CO2冰晶中具有不同的最大可移動距離。


關鍵字:二氧化碳、星際冰晶、光化作用、光脫附、真空紫外光、四極質譜儀
摘要(英) Abstract
Carbon dioxide (CO2) is one of the most abundant molecules present in interstellar ice after H2O and CO. In the high mass protostars, CO2 represents an important tracer of the chemical and physical history. Further, the photoprocess of CO2 ice has been being the main subject of experimental studies quite recently.

In this study, we present CO2 ice deposited and VUV irradiated at different temperatures (14 K, 50 K, 70 K), that aims to understand the thermal effect on the mechanism of photodesorption of CO2 ice. We used a microwave-discharge hydrogen-flow lamp to mimic the interstellar UV field (114−170 nm). A quartz crystal microbalance (QCM) and a fouier transform infrared spectroscopy (FTIR) were selected to be the principal instruments in two different experimental systems, and both systems equipped with a quadrupole mass spectrometer (QMS) to measure the desorbed species during the whole experimental process.

Mass spectra show that desorbed molecules mostly originated from the event, CO2 ice decomposed to CO. Secondary desorbed molecules come from the photolysis of CO2 ice as VUV irradiation proceeding to form O2. Finally, a few CO2 molecules directly desorbed from CO2 ice. According to our results, photodesorption yield increased with the increased accumulation of photolysis products, reached a limited value due to the photolysis product only can desorb the surface layers at the temperature below sublimation of CO (14 K). After the ice temperature was raised up to 50K and 70K, Photo-product CO will either desorbed from the surface and also from the deep layers of ice. The amorphous ice structure will turn into crystalline above 50K and beyond, so CO will struggle to migrate to the surface gradually. Until the crystalline structure of CO2 was fully destroyed, CO will sublimate freely within the ice interior.

Moreover, when CO2 ice was deposited and VUV irradiated at the temperature which is above the sublimation temperature of CO, we determined the maximum mobile distance of CO molecule in CO2 ice at 50 K and 70 K.











Keyword:carbon dioxide,interstellar ice,photolysis,photodesorption,VUV,QMS
關鍵字(中) ★ 二氧化碳
★ 星際冰晶
★ 光化作用
★ 光脫附
★ 真空紫外光
★ 四極質譜儀
關鍵字(英) ★ carbon dioxide
★ interstellar ice
★ photolysis
★ photodesorption
★ VUV
★ QMS
論文目次 目錄
摘要 i
Abstract II
誌謝 III
目錄 III
圖目錄 VI
表目錄 VIII
第1章 前言 - 1 -
1-1 近代天文學發展趨勢與研究背景 - 1 -
1-2 太空觀測到太空模擬實驗(Laboratory simulation) - 2 -
1-2-1 星際物質 - 2 -
1-2-2 星際冰晶 - 2 -
1-3 CO2與凍結線(snowline) - 3 -
第2章 實驗原理與儀器架設 - 5 -
2-1 星際冰晶其衍化機制 - 5 -
2-1-1 宇宙射線-高能粒子 - 5 -
2-1-2 熱能 - 6 -
2-1-3 光子作用機制 - 6 -
2-2 石英晶體微量秤(Quartz Crystal Microbalance, QCM) - 8 -
2-2-1 壓電效應與逆壓電效應 (Direct Piezoelectric effects and Converse Direct Piezoelectric effects) - 9 -
2-3 四極質譜儀(Quadrupole Mass Spectrometer, QMS) - 10 -
2-4 紅外光譜 - 12 -
2-4-1 紅外線吸收特徵 - 12 -
2-4-2 比爾定律(Beer-Lambert law) - 13 -
2-4-3 傅氏紅外光譜儀(Fourier transform infrared spectroscopy, FTIR) - 14 -
2-4-4 麥克森干涉儀 - 15 -
2-4-5 干涉圖轉換為光譜圖和光偵測器的訊號優化 - 17 -
2-5 模擬太空環境 - 19 -
2-5-1 PDS超高真空系統 - 19 -
2-5-2 IPS超高真空系統 - 20 -
2-5-3 低溫冷凍系統 - 21 -
2-6 氣體預備系統(Gas Pre-handling System) - 24 -
2-6-1 PDS氣體預備系統 - 24 -
2-6-2 IPS氣體預備系統 - 24 -
2-7 真空紫外光源-微波氫氣放電管(Microwave-discharge hydrogen-flow lamp, MDHL) - 25 -
2-8 實驗過程 - 29 -
2-8-1 實驗前置作業與降溫程序 - 29 -
2-8-2 微波氫氣放電管之前置作業 - 29 -
2-8-3 氣體的預備與長冰程序 - 29 -
2-8-4 照光程序 - 30 -
第3章 實驗結果與分析 - 31 -
3-1 四極質譜儀數據中分子的裂解效率 - 31 -
3-2 PDS結果與分析 - 33 -
3-2-1 CO2冰晶中光化作用下的光脫附行為 - 36 -
3-2-2 光化作用下的產物與質譜脫附訊號結果與分析 - 37 -
3-2-3 溫度效應中的光脫附行為與分子的最大可移動距離 - 40 -
3-3 IPS結果與分析 - 48 -
3-3-1 溫度效應下CO2冰晶的結構變化與光脫附之關係 - 50 -
第4章 結論 - 55 -
4-1 實驗總結 - 56 -
參考文獻 - 57 -
參考文獻 參考文獻
[1] Steve Garber. (n.d.). Sputnik and The Dawn of the Space Age.
Washington D.C.: NASA. Retrieved October 10, 2007, from http://history.nasa.gov/sputnik/index.html. Access January, 2014.
[2] NASA. (n.d.). Sputnik 1: Description. Retrieved October 10, 2007,
from http://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=1957-001B.
[3] R. D. Launius. (n.d.). Sputnik and the origins of the space age.
Washington D.C.: NASA. Retrieved January 28, 2005, from http://history.nasa.gov/sputnik/sputorig.html. Access January, 2014.
[4] C. C. Kraft, James L. Schefter. (2001). Flight: My Life in Mission
Control. 1st ed. p. 3-5. New York: Dutton.
[5] L. F. Belew, Ernst Stuhlinger. (1973). SKYLAB: A Guidebook.
1st ed. Washington D.C.: National Aeronautics and Space Administration; for sale by the Supt. of Docs., U.S. Govt. Print. Chapter I. Available at: http://history.nasa.gov/EP-107/contents.htm. Access January, 2014.
[6] D. J. Hollenbach, H. A. Thronson. (1987). Interstellar Processes.
1st ed. p. 3. New York: Midtown Manhattan.
[7] B. T. Draine. (2011). Physics of the Interstellar and Intergalactic
Medium. 1st ed. p. 1-2. New Jersey: Princeton University.
[8] R. H. Dicke. P. J. E. Peebles. P. G. Roll. D. T. Wilkinson. (1965).
Cosmic Black-Body Radiation. Astrophysical Journal. 142: p. 414-419
[9] C. R. Cowley. (1995). An Introduction to Cosmochemistry.
1st ed. p. 6. Cambridge: Cambridge University.
[10] J. M. Greenberg. (1986). The role of grains in molecular chemical
evolution. Astrophysics and Space Sci. 128: p. 17-31.
[11] W. A. Schutte. Ed. J.M. Greenberg. (1996). The Cosmic Dust
Connection. 1st ed. p. 1-42. Dordrecht: Kluwer.
[12] A. G. G. M. Tielens. D. C. B. Whittet. Ed. Ewine F. van Dishoeck.
(1997). Molecules in Astrophysics: Probes and Processes. 1st ed. p. 45-60. Dordrecht: Kluwer.
[13] P. K. Haff. A. Eviata. G. L. Siscoe. (1983). Ring and plasma: The
enigma of Enceladus. Icarus 56: p. 426-438.
[14] A. H. Delsemme. Wilkening. Ed. L. L. (1982). Comets. 1st ed.
p.85-163. Tucson: University of Arizona.
[15] D. A. Mendis. H. L. F. Houpis. M. L. Marconi. (1985). The physics
of comets. 1st ed. p. 15-17. London : Gordon and Breach Science Publishers.
[16] M. H. Moore. R. Khanna. B. J. Donn. (1991). Studies of proton
irradiated H2O + CO2 and H2O + CO ices and analysis of synthesized molecules. Geophys. Res. 96: p. 17541
[17] C. Y. R. Wu. D. L. Judge. (1991). Trends Chem. Physics. 1: p. 55
[18] M. S. Westley. R. A. Baragiola. R. E. Johnson. G. A. Baratta. (1995).
Ultraviolet photodesorption from water ice. Planet. Space Sci. 43: p. 1311-1315
[19] S. G. Warren. (1984). Optical constants of ice from the
ultraviolet to the microwave. App. Optics. 23: p. 1206-1225
[20] P. A. Gerakines. M. H. Moore. R. L. Hudson. (2001). Energetic processing of
laboratory ice analogs: UV photolysis versus ion bombardment. Geophys. Res. 106: p. 33381-33385
[21] G. A. Baratta. G. Leto. M. E. Palumbo. (2002). A comparison of ion
irradiation and UV photolysis of CH4 and CH3OH. A&A 384: p. 343-349.
[22] N. J. Mason. Anita Dawes. Philip D. Holtom. Robin J. Mukerji. Michael P.
Davis. Bhalamurugan Sivaraman. Ralf I. Kaiser. Søren V. Hoffmann. David A. Shaw. (2005). VUV spectroscopy and photo-processing of astrochemical ices: an experimental study. Faraday Discussions 133: p. 311-329.
[23] R. G. Martin. Mario Livio. (2012). On the Evolution of the Snow Line in
Protoplanetary Discs. Astron. Soc. 000: p. 1-5.
[24] E. Dartois. (2005).Space Sci. Rev. 119: p. 293-310.
[25] K. M. Pontoppidan. A. C. A. Boogert. H. J. Fraser. E. F. van Dishoeck. G. A.
Blake. F. Lahuis. K. I. Öberg. N. J. Evans II. C. Salyk. (2008). Astrophys. J. 678: p. 1005.
[26] D. C. B. Whittet. P. A. Gerakines. A. G. G. M. Tielens. A. J. Adamson. A. C. A.
Boogert. J. E. Chiar. T. de Graauw. P. Ehrenfreund. T. Prusti. W. A. Schutte. B. Vandenbussche. E. F. van Dishoeck. (1998). Astrophys. J. Lett. 498: p. L159.
[27] N. Sakai. akeshi Sakai. Yuri Aikawa. Satoshi Yamamoto. (2008). Detection of
HCO2+ toward the Low-Mass Protostar IRAS 04368+2557 in L1527. Astrophys. J. Lett. 675: p. 2.
[28] A. M. S. Boonman. E. F. van Dishoeck. F.Lahuis. S.D.Doty. C.M.Wright
D. Rosenthal. (2003). Gas-phase CO2,C2H2, and HCN toward Orion-KL. A&A 399: p. 1047-1061.
[29] A. Leger. J. Klein. S. de Cheveigne. C. Guinet. D. Defourneau. M.
Belin. (1979). The 3.1 micron absorption in molecular clouds is probably due to amorphous H2O ice. Astro. Astrophys. 79: p. 256-259.
[30] M. H. Moore. R. L. Hudson. (2003). Infrared study of ion-irradiated
N2 -dominated ices relevant to Triton and Pluto: formation of HCN and HNC. Icarus 161: p. 486-500
[31] J. Clayden. N. Greeves. S. Warren. (2000). Organic Chemistry.
1st ed. p. 182–184. Oxford: Oxford University.
[32] P. Avouris. R. E. Walkup. (1989). Fundamental Mechanisms of
Desorption and Fragmentation Induced by Electronic Transitions at Surfaces. Annu. Rev. Phys. Chem. 40: p. 173-206
[33] O. Rakhovskaia. P. Wiethoff. P. Feulner. Nucl. (1995).Thresholds for
electron stimulated desorption of neutral molecules from solid N2, CO, O2 and NOInstrum. Methods Phys. Res., Sect. B 101: p. 169-173
[34] D. Bejan, J. Optoelectron. (2004). Photodesorption of molecular
adsorbates from metallic surfaces. Adv. Mater. 6: p. 359-384
[35] M. Bertin. Edith C. Fayolle. Claire Romanzin. Karin I. Öberg.
Xavier Michaut. Audrey Moudens. Laurent Philippe. Pascal Jeseck. Harold Linnartz. Jean-Hugues Fillion. (2012). UV photodesorption of interstellar CO ice analogues: from subsurface excitation to surface desorption. Phys. Chem. Chem. Phys 14: p. 9929-9935
[36] G. Gautschi. (2002). Piezoelectric Sensorics: Force Strain
Pressure Acceleration and Acoustic Emission Sensors Materials and Amplifiers. 1st ed. p. 5-7. New York: Springer.
[37] J. Janata. (2009). Principles of Chemical Sensors. 2nd ed. p. 2-6.
New York: Springer.
[38] 黃柏渝。 2010。 極性分子與非極性分子對含CH4混合冰晶光
化作用之影響。 中壢: 國立中央大學物理研究所。
[39] 莊可儒。 2011。 H2S+CO 與H2S+CO2 混合冰晶光化作用下含硫分子之生成機制。中壢: 國立中央大學物理研究所。
[40] A. Masson. (1989). Free and Supported Metal Clusters: Structures and Reactivity.
48: p. 665-675.
[41] B. deB. Darwent. (1970). Bond dissociation energies in simple
molecules. 2nd ed. p. 23. Washington D.C.: U.S. National Bureau of Standards.
[42] P.A. Gerakines. W.A. Schutte. P. Ehrenfreund. (1996). Ultraviolet
processing of interstellar ice analogs. A&A 312: p. 289-305.
[43] K. I. Öberg. E. F. van Dishoeck. H. Linnartz. (2009).
Photodesorption of ices I: CO, N2, and CO2. A&A 496: p. 281-293.
[44] H. Okabe. (1978). Photochemistry of small molecules. 1st ed.
p. 177, 208-214. New Jersey: John Wiley & Sons.
[45] P. A. Gerakines. W. A. Schutte. P. Ehrenfreund. (1996). Ultraviolet processing of
interstellar ice analogs. A&A 312: p. 289-305.
[46] G. M. Muñoz Caro. A. Jiménez-Escobar. J. Á. Martín-Gago. C. Rogero. C.
Atienza. S.Puerta. J.M.Sobrado. J. Torres-Redondo. (2010). New results on thermal and photodesorption of CO ice using the novel InterStellar Astrochemistry Chamber (ISAC). A&A 522: p. A108
[47] H. Cottin. Marla H. Moore. Yves Bénilan. (2003). PHOTODESTRUCTION
OF RELEVANT INTERSTELLAR MOLECULES IN ICE MIXTURES. The Astrophysical Journal 590: p. 874-881.
[48] Y.-J. Chen. K.-J. Chuang. G. M. Mu˜noz Caro. M. Nuevo. C.-C. Chu. T.-S. Yih.
W.-H. Ip. C.-Y. R. Wu. (2014). VACUUM ULTRAVIOLET EMISSION SPECTRUM MEASUREMENT OF A MICROWAVE-DISCHARGE HYDROGEN-FLOW LAMP IN SEVERAL CONFIGURATIONS: APPLICATION TO PHOTODESORPTION OF CO ICE. The Astrophysical Journal 780: p. 1.
[49] C. Yuan. john T.Yates Jr. (2014). RADIATION DAMAGE AND
ASSOCIATED PHASE CHANGE EFFECT ON PHOTODESORPTION RATES FROM ICES—LYαSTUDIES OF THE SURFACE BEHAVIOR OF CO2(ICE). The Astrophysical Journal 780: p. 8.
[50] R. M. Escribano. Guillermo M. Muñoz Caro. Gustavo A. Cruz-Diaz.
Yamilet Rodríguez-Lazcano. Belén Maté. (2012). Crystallization of CO2 ice and the absence of amorphous CO2 ice in space. PNAS 110: p. 32.
[51] M. Falk. (1987). Amorphous solid carbon dioxide. J. Chem. Phys. 86: p. 560.
[52] C. Yuan. john T.Yates Jr. (2013). Lyman-α photodesorption from
CO2(ice) at 75 K: Role of CO2 vibrational relaxation on desorption rate. J. Chem. Phys. 138: p. 154303.
[53] D. A. Bahr. R. A. Baragiola. (2012). PHOTODESORPTION OF SOLID
CO2 BY LYα. The Astrophysical Journal 761: p. 36.
[54] G. E. Hassel. E. Herbst. E. A. Bergin. (2010). Beyond the pseudo-time-dependent
approach: chemical models of dense core precursors. A&A 515: p. A66.
[55] K. I. Öberg. Harold Linnartz1. Ruud Visser. Ewine F. van Dishoeck. (2009).
PHOTODESORPTION OF ICES. II. H2O AND D2O. ApJ 693: p. 1209.
[56] J.-H. Fillion. E. C. Fayolleb. X. Michauta. M. Doronina. L. Philippea. J.
Rakovskya. C. Romanzinc. N. Championd. K. I. Öberge. H. Linnartzb. M. Bertina. (2014). Wavelength resolved UV photodesorption and photochemistry of CO2 ice. Faraday Discuss. 168: 533-552.
[57] F.A. van Broekhuizen. I.M.N. Groot. H.J. Fraser. E.F. van Dishoeck. S.Schlemmer.
(2005). Infrared spectroscopy of solid CO-CO2 mixtures and layers. A&A 451: p. 723-731.
[58] G. A. Cruz-Diaz. G. M. Muñoz Caro. Y.-J. Chen. T.-S. Yih. (2014). Vacuum-UV
spectroscopy of interstellar ice analogs II. Absorption cross=section of nonpolar ice molecules. A&A 562: p. A120.
指導教授 易台生(Tai-sone Yih) 審核日期 2014-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明