博碩士論文 101329018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.12.155.100
姓名 簡秋裕(Ciou-Yu Jian)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鈀銀薄膜之製備、改質及應用於氫氣分離研究
(Preparation and Modification of PdAg Membrane for H2 Separation)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究製備與改質鈀銀薄膜以應用於氫氣分離。研究中利用多種無電鍍法在改質後之多孔銀基板上鍍覆鈀銀膜,包含傳統無電鍍共鍍法(conventional electroless co-plating (C-ELCP)),連續無電鍍法(successive electroless plating (S-ELP))和銀離子控制無電鍍共鍍法(Ag-controlled electroless co-plating (Ag-ELCP))。鈀銀薄膜和銀基板之形貌、表面官能基和結構分別藉由掃描電子顯微鏡(scanning electron microscope, SEM),傅立葉轉換紅外光譜(Fourier transform infrared spectroscopy, FTIR)和X-光繞射儀(X-ray diffraction, XRD)來進行鑑定。
本研究中選用經由Pd70Ag30奈米顆粒改質之多孔銀基板作為鍍覆鈀銀薄膜的基材,先將銀顆粒鍍覆一層聚乙烯吡咯烷酮(PVP)或硬脂酸(SA)進行改質,並由傅立葉轉換紅外光譜(Fourier transform infrared spectroscopy, FTIR) 確認銀顆粒外圍成功包覆SA或PVP後,再經油壓機在1500 psi壓力下持力3分鐘,再經由350 oC持溫1小時的熱處理即可得到多孔銀基材,再填充Pd70Ag30奈米顆粒後,銀基板表面孔徑減少且變得平滑。
根據SEM的觀察可發現,在400 rpm鍍液的轉速下,可利用C-ELP法在已經由 Pd70Ag30奈米顆粒表面改質後的銀基板上得到緻密與均勻的鈀銀薄膜。然而,即使將無電鍍液中鈀/銀比例提高至90/10,成功鍍覆在Ag-PVP基板上的薄膜中鈀的含量僅只有37.6 %。而利用S-ELP法可製備出鈀/銀比例為70/30之薄膜,但其分別由銀、鈀和鈀銀相所組成,經由不同的氣氛熱處理可發現,空氣熱處理後的鈀銀薄膜會產生氧化現象,而經由氫氣與氮氣熱處理後,薄膜可成功形成合金相。以Ag-ELCP法製備出的鈀銀薄膜擁有最佳且緻密的表面結構,經由不同熱處理時間發現,薄膜緻密性隨著熱處理時間增長而提升,經由15小時氫氣熱處理的薄膜中鈀含量由原本60-80 %降至20-30 %,其原因為在長時間的熱處理下,會造成銀從基板大量偏析至薄膜中。
在氫氣滲透實驗可發現,氫氣在不同壓力下對應的滲透通量遵循線性關係,偏離了Sievert’s law,表示氫氣滲透鈀銀薄膜之速率決定步驟為表面反應。在本研究中,利用Ag-ELCP法製備出的鈀銀薄膜氫/氮選擇性為最高,約等於3,此乃因鈀銀薄膜的表面氧化造成一些微孔級的缺陷而降低選擇性。
摘要(英) In this study, the preparation and modification of PdAg membrane used for H2 separation has been studied. The PdAg membranes are deposited on the modified Ag substrate by various electroless plating methods, including conventional electroless co-plating (C-ELCP), successive electroless plating (S-ELP), and Ag-controlled electroless co-plating (Ag-ELCP). The morphologies, surface function groups, and structures of the prepared Ag substrates and PdAg membranes are analyzed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD), respectively.
The porous Ag substrates with surface modification of Pd70Ag30 nanoparticles are used to support the membrane. Ag powders are coated by SA or PVP, which are confirmed by Fourier transform infrared spectroscopy (FTIR). Afterwards, Ag-SA and Ag-PVP powders are mechanically pressed at 1500 psi for 3 min, and heat-treated at 350 oC for 1 h in air to get porous Ag substrates. By filling with Pd70Ag30 nanoparticles, the pore size has decreased and the surface becomes smooth.
SEM observation reveals that a uniform and dense PdAg membrane can be prepared by C-ELP at 400 rpm of stirring rate on Ag-PVP substrate. However, even the ratio of Pd/Ag in plating bath is up to 90/10, the Pd composition on the Ag-PVP substrate is only 37.6 %. On the other hand, when prepared by S-ELP method, it is found that desired Pd/Ag ratio of 70/30 with separated Ag, Pd, and PdAg phases of the membrane can be obtained. After heat treatment at various atmospheres, it is noted that air heat treatment results in the oxidation of Pd. However, N2 and H2 treatments can promote the formation of PdAg alloy phase. For the membrane prepared by Ag-CLCP, a membrane with the most uniform and dense structure can be prepared. During heat treatment, Pd composition decrease and the membrane become denser with increasing heat treatment time. The SEM line-scan results reveal that the Pd content is in the range of 60 and 80 at% for as-prepared C-Pd70. After heat treatment for 15 h, the Pd composition drops to 20~30 at % due to significant Ag segregation from the substrate during long-term heat treatment.
The corresponding permeation fluxes of H2 at various pressures follow a linear relationship, suggesting that Sievert’s law is not obeyed in the PdAg membranes and the permeation rate is dominant by surface-reaction-controlled process. The H2/N2 selectivity is about 3 for C-Pd70 sample prepared by Ag-ELCP method because of the formation of micrometer-scaled hillocks and pinholes which declines the selectively.
關鍵字(中) ★ 鈀銀薄膜
★ 多孔銀基板
★ 無電鍍法
★ 鈀銀奈米顆粒
★ 氫氣分離
★ 選擇性
★ Sievert’s 定律
關鍵字(英) ★ PdAg membrane
★ porous Ag substrate
★ electroless plating (ELP) method
★ PdAg nanoparticles
★ H2 permeation
★ selectivity
★ Sievert’s law
論文目次 Table of Contents
摘要........................................................i
Abstract..................................................iii
誌謝........................................................v
Table of Contents.........................................vii
List of Figures............................................ix
List of Tables.............................................xi
Chapter 1 Introduction......................................1
1.1 H2 Separation...........................................2
1.2 PdAg Membrane...........................................4
1.3 Preparation of PdAg Membrane on a Porous Substrate.....11
1.3.1 Porous substrate for supporting membrane.............11
1.3.2 Modification of porous substrates....................13
1.3.3 Manufacturing techniques for H2 separation membrane...................................................13
1.4 Motivation and Experimental Approach...................15
Chapter 2 Experimental Section.............................17
2.1 Chemicals and Materials................................17
2.2 Preparation of the Pd70Ag30 Nanoparticles and Ag Substrate..................................................19
2.2.1Preparation of Pd70Ag30 nanoparticles 19
2.2.2 Preparation and modification of the Ag substrates....19
2.3 Preparation of PdAg Membrane by Electroless Plating Method.....................................................24
2.3.1 Sensitization and activation of Ag substrates........24
2.3.2 Preparation of PdAg membrane with conventional electroless co-plating (C-ELCP) process....................24
2.3.3 Preparation of PdAg membrane with successive electroless plating (S-ELP) process........................24
2.3.4 Preparation of PdAg membrane with Ag-controlled electroless co-plating (Ag-ELCP) process...................27
2.4 Characterization of Membranes and Ag Substrates........30
2.4.1 X-ray diffraction (XRD)..............................30
2.4.2 High resolution transmission electron microscopy (HRTEM)....................................................30
2.4.3 Field emission scanning electron microscopy (FE-SEM)...................................................30
2.4.4 Fourier transform infrared (FTIR) spectroscopy.......31
2.5 H2 Permeation..........................................32
Chapter 3 Results and Discussion...........................35
3.1 Characterization of the Pd70Ag30 Nanoparticles.........35
3.2 Characterization of the a Ag-PVP and Ag-SA Powders.....38
3.3 Morphology, Structure and Composition of PdAg Membranes..................................................42
3.3.1 Characterization of the PdAg membranes prepared by C-ELCP method..............................................42
3.3.2 Characterization of the PdAg membranes prepared by S-ELP method...............................................47
3.3.3 Characterization of the PdAg membranes prepared by Ag-ELP method..............................................50
3.4 H2 permeation test for various samples.................57
Chapter 4 Conclusions......................................62
References.................................................64

參考文獻 References
[1] J. Docekal, Int. J. Hydrogen Energy 11 (1986) 709.
[2] U.Winter, M. Herrmann, Fuel Cells 3 (2003) 141.
[3] A. Züttel, A. Remhof, A. Borgschulte, O. Friedrichs, Phil. Trans. R. Soc. A 386 (2010) 3329.
[4] K. Hassmann, H. M. Kohne, Int. J. Hydrogen Energy18 (1993) 635.
[5] M. A. Rosen, D. S. Scott, Int. J. Hydrogen Energy 23 (1998) 653.
[6] G. J. Grashoff, C. E. Pilkington, C. W. Corti, Platinum Metals Rev. 27 (1983) 157.
[7] Y. S. Cheng, M. A. Peña, J. L. Fierro, D. C. W. Hui, K. L. Yeung, J. Membrane Sci. 204 (2002) 329.
[8] S. C. A. Kluiters, ECN Publication (2004) 1.
[9] I. Pinnau, B. D. Freeman, ACS Symposium Series (2004) 1.
[10] S. Uemiya, Top. Catal. 29 (2004) 79.
[11] D. S. Sholl, Y. H. Ma, Mater. Res. Bull. 31 (2006) 770.
[12] O. Hatlevik, S. K. Gade, M. K. Keeling, P. M. Thoen, A. P. Davidson, J. D. Way, Sep. Purif. Technol. 73 (2010) 59.
[13] S. K. Gade, M. K. Keeling, A. P. Davidson, O. Hatlevik, J. D. Way, Int. J. Hydrogen Energy 34 (2009) 6484.
[14] F. A. Lewis, Int. J. Hydrogen Energy 20 (1995) 587.
[15] A. L. Athayde, R. W. Baker, P. Nguyen, J. Membrane Sci. 94 (1994) 299.
[16] D. Fort, J. P. G. Farr, I. R. Harris, J. Less-Common Met. 39 (1975) 293.
[17] J. Okazaki, D. A. P. Tanaka, M. A. L. Tanco, Y. Wakui, F. Mizukami, T. M. Suzuki, J. Membrane Sci. 282 (2006) 370.
[18] S. Uemiya, T. Matsuda, E. Kikuchi, J. Membrane Sci. 56 (1991) 315.
[19] I. Karakaya, W. T. Thompson, Bulletin of Alloy Phase Diagrams 9 (1988) 237.
[20] T. C. Huang, M. C. Wei, H. I. Chen, Sep. Purif. Technol. 32 (2003) 239.
[21] A. Basile, Top. Catal. 51 (2008) 107.
[22] M. L. Bosko, J. B. Miller, E. A. Lombardo, A. J. Gellman, L. M. Cornaglia, J. Membrane Sci. 369 (2011) 267.
[23] H. I. Chen, C. Y. Chu, T. C. Huang, Thin Solid Films 460 (2004) 62.
[24] R. Bhandari, Y. H. Ma, J Membrane Sci. 334 (2009) 50.
[25] Y. S. Cheng, K. L. Yeung, J. Membrane Sci. 158 (1999) 127.
[26] N. I. Timofeev, F. N. Berseneva, V. M. Malarov, Int. J. Hydrogen Energy 19 (1994) 895.
[27] J. Shu, B. P. A. Grandjean, A. V. Neste, S. Kaliaguine, Can. J. Chem. Eng. 69 (1991) 1036.
[28] S. Uemiya, Y. Kude, K. Sugino, N. Sato, T. Matsuda, E. Kikuchi, Chem. Lett. 17 (1988) 1687.
[29] V. Jayaraman, Y. S. Lin, J. Membrane Sci. 104 (1995) 251.
[30] K. C. Cannon, J. J. Hacskaylo, J. Membrane Sci. 65 (1992) 258.
[31] J. Shu, A. Adnot, B. P. A. Grandjean, S. Kaliaguine, Thin Solid Films 286 (1996) 72.
[32] A. Li, W. Liang, R. Hughes, J. Membrane Sci. 165 (2000) 135.
[33] S. E. Nam, K. H. Lee, J. Membrane Sci. 170 (2000) 91.
[34] S. E. Nam, S. H. Lee, K. H. Lee, J. Membrane Sci. 153 (1999) 163.
[35] S. E. Nam, K. H. Lee, J. Membrane Sci. 192 (2001) 177.
[36] P. P. Mardilovich, Y. She, Y. H. Ma, AIChE J. 44 (1998) 310.
[37] The Engineering Toolbox, Linear expansion coefficients htttp://www.engineeringtoolbox.com.
[38] F. C. Nix, D. Macnair, Phys. Rev. 61 (1942) 74.
[39] W. H. Lin, H. F. Chang, Surf. Coat. Technol. 194 (2005) 157.
[40] G. F. Zeng, L. Shi, Y. Y. Liu, Y.F. Zhang, Y. H. Sun, Int. J. Hydrogen Energy39 (2014) 4427.
[41] D. Tanaka, M. Tanco, J. Okazaki, Y. Wakui, F. Mizukami, T. Suzuki, In: 10th International conference of inorganic membranes, poster session (2008).
[42] W. J. Koros, G. K. Fleming, J. Membrane Sci. 83 (1993) 1.
[43] F. Roa, J. D. Way, Ind. Eng. Chem. Res. 42 (2003) 5827.
[44] S. Adhikari, S. Fernando, Ind. Eng. Chem. Res. 45(2006) 875.
[45] M. E. Ayturk, Y. H. Ma, J. Membrane Sci. 330 (2009) 233.
[46] S. Ilias, N. Su, U. I. Udo-Aka, F. G. King, Sep. Sci. Technol. 32 (1997) 487.
[47] R. Hughes, Membrane Technol. 2001 (2001) 9.
[48] S. Aggarwal, A. P. Monga, S. R. Perusse, R. Ramesh, V. Ballarotto, E. D. Willams, B. R. Chalamala, Y. Wei, R. H. Reuss, Science 287 (2000) 2235.
[49] S. Samingprai, S. Tantayanon, Y. H. Ma, J. Membrane Sci. 347 (2010) 8.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2014-7-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明