博碩士論文 101350605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:18.191.223.23
姓名 陶安時(Ansumana Touray)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 以遙測技術進行西甘比亞多時序土地覆蓋變遷監測
(Multi-Temporal Land-Cover Change Monitoring of the Western Gambia Using Remote Sensing)
相關論文
★ 多時期衛星影像之自動化監督性分類★ 大範圍地區土地使用分類之研究
★ 高解析力衛星影像控制點座標之自動化萃取★ 影像最佳類別數目之研究
★ 遙控直昇機應用於工程管理監測可行性之研究★ 以地理資訊系統輔助共同管道之最適設計
★ 有理函數應用於空載多光譜影像幾何校正之研究★ SPOT自然色影像產生之研究
★ 結合影像區塊及知識庫分類之研究-以IKONOS衛星影像為例★ 遙控飛機空載視訊影像自動化鑲嵌方法之研究
★ 影像分割技術於高解析衛星影像分類之應用★ 小波多層次解析之影像融合應用
★ 線性複合模式應用於變遷偵測之研究★ 改良式變異向量分析法於變遷偵測之探討
★ 區塊分割變遷偵測法於多時期衛星影像之應用★ 資料挖掘技術應用於外來入侵植物研究 (以恆春地區銀合歡為例)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究的主要目的為使用遙測影像技術進行西甘比亞區域的土地覆蓋變遷監測,研究產製該區的土地覆蓋變遷圖,並關注於1985年到2013年間的都市成長情況。研究區範圍包含甘比亞西海岸區與部分的北岸區,緯度分布由北緯13o 03’ 到 13o 36’,經度範圍為西經16o 06’ 到 16o 36’ 之間。甘比亞的全國人口數為1,195,082 人,而63.49%的甘比亞居民居住於此,區域人口密度為478人/平方公里。
為分析需要,本研究蒐集了1985、1999、2013的Landsat影像進行地表覆蓋分類,並修正現有的土地覆蓋參考地圖以進行分類精度的評估。多時序的影像資料先進行空間資料分析處理:包括影像座標校正、以支援向量機(SVM)進行地物分類;後續分析包含了多時序土地覆蓋圖的建立,並求得分類地物類別每期的類型變動與其關聯的面積變化。研究結果顯示:研究區內的建物類別相對其他地物類別有著相對高程度的正增長,1985年為46.42平方公里,1999年增為97.35平方公里,而2013年則變為193.02平方公里,以上數據顯示了急遽增加的面積變化;此外,地表自然植被類別由1985年的1,184.22平方公里到2013年的929.69平方公里,研究數據分析顯示該類別的面積變化率呈現穩定地減少;而耕地類別的面積則略有些增加;紅樹林類別的分布與覆蓋面積從過去30年以來則維持相當地穩定。西甘比亞的人口壓力應是研究區內影響地表建物類別變遷增長的最重要驅力。因此,政府與其他利益攸關者應該建立可達成均衡合作與永續性自然資源管理的政策與策略。
摘要(英) The main objective of this research is aimed at producing multi-temporal land cover maps of the Western Gambia in order to monitor land-cover changes (LCC) using Remote Sensing techniques with a focus on urban growth during the period 1985 – 2013. The study area is the Western Gambia covering West Coast Region and part of North Bank Region lying between Latitudes 13o 36’ N and 13o 03’ N and Longitude 16o 54’ W and 16o 06’ W. About 63.49% of the
country’s population resides here with a population density of 478 people per km2.
For this purpose, multi-temporal Landsat images for 1985, 1999, and 2013 were acquired. The existing land cover reference maps collected and modified for accuracy assessment. These multi-temporal data were processed using spatial analysis tools of geo-referencing, Support Vector Machine (SVM) classification, and post- classification processes, to map the patterns and extent of land cover in the study area as well as determine the magnitude of changes between the years of interest.
The result of the study showed that the built-up areas have been on a constant positive and mostly uncontrolled expansion from 46.42 km2 of the study area in 1985 to 97.35 km2 in 1999 and to 193.02 km2 in 2013. On the other hand, terrestrial vegetation has been on a steady decline, from 1,184.22 km2 in 1985 to 929.69 km2 in 2013, while the cultivation land experienced a slight increase in area. The mangrove forest is fairly stable in the past three decades. Population pressure is the major driving forces of LCC in the Western Gambia; therefore the government and other stakeholders should develop policies and strategies to achieve a balanced, coordinated and sustainable natural resources management.
關鍵字(中) ★ 多時序遙測
★ 土地覆蓋
★ 變遷偵測
★ 西甘比亞
關鍵字(英) ★ Multi-Temporal
★ Remote Sensing
★ Land cover
★ Change detection
★ Western Gambia
論文目次 CHINESE ABSTRACT ............... i
ABSTRACT ...........ii
ACKNOWLEDGEMENTS ............iii
LIST OF FIGURES .................... vii
LIST OF TABLES ............ ix
ACRONYMS .............. xi
CHAPTER 1 INTRODUCTION .......... 1
1.1 Background ..... 1
1.2 Problem Statement and Research Justification ......... 3
1.3 Research Objectives ....................... 4
1.4 Research Questions................ 4
1.5 Research Scopes and Limitations ........... 5
CHAPTER 2 BACKGROUND INFORMATION AND STUDY AREA ..................... 6
2.1 General Information of the Gambia ............... 6
2.2 Land Use and Land Cover Pattern ............ 12
2.3 The Study Area ..................... 15
2.3.1 Geographic Location ............... 15
2.3.2 Rainfall and Temperature ............ 16
2.3.3 Urbanization ........................ 18
CHAPTER 3 LITERATURE REVIEW......... 20
CHAPTER 4 MATERIALS AND METHODOLOGY ............. 25
4.1 Materials ........ 26
4.2 Data Collection .................. 26
4.2.1 Satellite Data Acquisitions ................... 27
4.2.2 Ancillary Data ...................... 30
4.3 Image Preprocessing ...................... 31
4.3.1 Layer Stacking ................. 31
4.3.2 Geo-referencing .................... 34
4.3.3 Subset Data via ROIs ................... 35
4.4 Image Classification ...................... 36
4.4.1 Training Samples Selection ................ 37
4.4.2 Support Vector Machine (SVM) Classification Algorithm ...................................... 39
4.4.3 Post Classification Smoothing ................ 42
4.4.4 Accuracy Assessment using Modified Reference Maps Shapefile .......................... 42
4.5 Change Detection ...................... 44
CHAPTER 5 RESULTS AND DISCUSSIONS ............... 46
5.1 Evaluation of Training Sample Sets ............... 46
5.2 Classification and Accuracy Assessment Results ................. 48
5.2.1 Land Cover Map in 1985 .......................... 49
5.2.2 Land Cover Map in 1999 ................... 53
5.2.3 Land Cover Map in 2013 ............... 56
5.3 Land-Cover Change Analysis ................... 59
5.3.1 Spatial Distribution of Land-Cover Changes ......................... 59
5.3.2 Magnitude and Rates of Land-Cover Changes ..................... 59
5.3.3 Nature of Land-Cover Changes ........................... 60
5.4 Driving Forces of Land-Cover Change in the Western Gambia ......... 66
5.4.1 Drought and Rainfall Pattern ............. 66
5.4.2 Population Growth .................... 67
5.4.3 Forest and Land Resources Degradation .............. 68
5.4.4 Government Strategies and Policies ................ 69
CHAPTER 6 CONCLUSION AND RECOMMENDATIONS ................ 71
6.1 Conclusions ....................... 71
6.2 Recommendations ................... 73
REFERENCES ............................. 75
參考文獻 [1] Anderson, J.R., Hardy, E.E., Roach, J.T., and Witmer, R.E., 1976. A Land Use and Land Cover Classification System for Use with Remote Sensor Data. Geological Survey Professional Paper No. 964, U.S. Government Printing Office, Washington, D.C. p. 28.
[2] Bakurin, N. S., 2010. Etude de suivi du trait de cote et mise en place d’un schema directeur du littoral oust africain. Diagnostic national en Gambie. UMEMOA UICN.
[3] Bos, D., Gregoras, I., and Ndiaye, A., 2006. Land Cover and Avian Biodiversity in Rice Fields and Mangroves of West Africa.
[4] Burges, C. J., 1998. A Tutorial on Support Vector Machines for Pattern Recognition, in Data Mining and Knowledge Discovery, U. Fayyad, Ed. Kluwer Academic, pp. 1–43.
[5] Butler, K., 2013. ArcGIS Resources. http://blogs.esri.com/esri/arcgis/2013/07/24/bandcombinations-for-landsat-8/. Retrieved: 15 – 05 – 2014.
[6] Camara, A., 2012. National Data Collection Report ‐ The Gambia. UNEP‐WCMC Technical Report.
[7] Castro, E. A., and Donoho, D. L., 2009. Does Median Filtering Truly Preserve Edges Better than Linear Filtering? The Annals of Statistics 37, no. 3, 1172-1206.
doi:10.1214/08-AOS604. http://projecteuclid.org/euclid.aos/1239369019.
[8] Cauwenberghs, G. and Poggio, T., 2001. Incremental and Decremental Support Vector Machine Learning. In Advances in Neural Information Processing Systems, (NIPS*2000),volume 13. NIPS, Cambridge MA: MIT Press.
[9] Chang, K.T., 2012. Introduction to Geographic Information Systems, 6th Ed. New York: McGraw-Hill.
[10] Chen, C.F. and Chang, L.Y. The National-Scale Land Change Detection System in Taiwan
[11] Chen, C.F., Son, N.T., Chang, N.B., Chen, C.R., Chang, L.Y., Valdez, M., Centeno, G.,Thompson, C.A., and Aceituno, J.L., 2013. Multi-Decadal Mangrove Forest Change Detection and Prediction in Honduras, Central America, with Landsat Imagery and a Markov Chain Model.
[12] CIA [US], 2014. The World Factbook. https://www.cia.gov/library/publications/theworld-factbook/geos/ga.html. Retrieved 2014-06-09.
[13] Cideciyan, A.V. Jacobson, S.G., Kemp, C.M., Knighton, R.W., Nagel, J.H., 1992.Registration of High-Resolution Images of the Retina. SPIE Medical Imaging VI: Image
Processing 1652, 310–322.
[14] Civco, D.L., Hurd, J.D., Wilson, E.H., Song, M., and Zhang, Z., 2002. A Comparison of Land Use and Land Cover Change Detection Methods. ASPRS-ACSM Annual Conference and FIG XXII Congress pg.2.
[15] Colwell, J. E., Davis, G., and Thomson, F., 1980. Detection and Measurement of Changes in the Production and Quality of Renewable Resources. USDA Forest Service Final
Report 145300-4-F, ERIM, Ann Arbor, MI, USA.
[16] Congalton, R.G. and Green, K., 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, Lewis Publishers, Florida.
[17] Congalton, R.G., 1991. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing of Environment. 37: 35-46.
[18] Congalton, R.G., Oderwald, R.G., and Mead, R.A., 1983. Assessing Landsat Classification Accuracy Using Discrete Multivariate Analysis Statistical Techniques, PERS 49:1671-1678.
[19] Coppin, P. R. and Bauer, M. E., 1996. Digital Change Detection in Forest Ecosystems with Remote Sensing Imagery. Remote Sensing Reviews. Vol. 13. p. 207- 234.
[20] Coppin, P., Jonckheere, I., Nackaerts, K., Muys B., and Lambin, E., 2004. Digital Change Detection Methods in Ecosystem Monitoring. International Journal of Remote
Sensing. Vol. 25, No. 9, 1565–1596.
[21] Cortes, C., and Vapnik, V., 1995. Support-Vector Networks. Machine Learning 20 (3): 273. doi:10.1007/BF00994018.
[22] Department of Fisheries, Forestry Park and Wildlife, 2002. Water Resource Drought Response Assessment Report, 2002.
[23] Department of Forestry, 2007. PIWAMP Special Studies on Fuelwood, Marketing Survey and Marketing Research for Non-Timber Forest Products and Alternative Cooking Sources.
[24] Department of Planning, 2006. National Sample Survey on Crop Production and Land Productivity.
[25] Eastman, J.R., 1995. IDRISI for Windows, Version 1.0 .Worcester MA: Clark University
[26] Ehlers, M., Welch, R. and Ling, Y., 2004. GIS and Context Based Image Enhancement, Proceedings of the XXth International Congress of ISPRS, Istanbul, Turkey, IAPRS
XXXV/B4: 397-402
[27] Ellis, E., 2013. Land-Use and Land-Cover Change.
http://www.eoearth.org/view/article/154143. Retrieved: 16 – 05 – 2014.
[28] Ezeomedo, I.C., 2006. Change Analysis of Land Use/Land Cover of Yola Metropolis to Aid Planning for a Sustainable Development. B.Tech. Project Submitted to the Department of Surveying and Geoinformatics, Federal (Moddibo-Adama) University of Technology Yola, Nigeria.
[29] Forster, H., 1983. Evaluation of the National Forest Inventory of the Gambia. Gambian- German Forestry Project. DFS/GTZ, Eschborn.
[30] Friess, T., Cristianini, N., and Campbell, C., 1998. The Kernel Adatron Algorithm: A Fast and Simple Learning Procedure for Support Vector Machine. In Proceedings of 15th
International Conference on Machine Learning.
[31] Government of The Gambia, 2009. Agriculture and Natural Resources (ANR) Policy (2009-2015).
[32] Government of The Gambia. The World Factbook, 2006. Retrieved 07 – 04 – 2014.
[33] Intergovernmental Oceanographic Commission. Sea Level Station Monitoring Facility. http://www.ioc-sealevelmonitoring.org/station.php?code=dakar. Retrieved: 18 – 06 -2014.
[34] IPCC, 2001. Special Report on Land Use, Land-Use Change and Forestry. http://www.grida.no/climate/ipcc/land_use/045.htm. Retrieved: 06 – 06 – 2014.
[35] Jaiteh, M., 2008. The Atlas of the Gambia Project.
http://www.columbia.edu/~msj42/LandResource.htm. Retrieved: 30 – 04 – 2014.
[36] Jensen, J. R., 1996. Introductory Digital Image Processing: A Remote Sensing Perspective, 2d ed. Upper Saddle River, NJ: Prentice Hall.
[37] Keerthi, S. S., Shevade, S.K., Bhattacharyya, C., Murthy, K.R.K., 2000. A Fast Iterative Nearest Point Algorithm for Support Vector Machine Classifier Design. IEEE Transactions on Neural Networks, 11(1):124–136.
[38] Law, G., 2006. Divisions of Gambia. Administrative Divisions of Countries. http://www.statoids.com/ugm.html. Retrieved 07 – 04 – 2014.
[39] Lillesand, T. M., and Kiefer, R. W., 2000. Remote Sensing and Image Interpretation. Wiley & Son, New York.
[40] Lillesand, T.M., and Kiefer, R.W., 1994. Remote Sensing and Image Interpretation, 3rd Ed., John Wiley and Sons, Inc.: Toronto.
[41] Ludwing and Bojang, 1998. Inventory Results and Analysis of the National Forest Resource Inventory of The Gambia 1997/1998. URDFP December 1998 Report.
[42] Macleod, R.D., and Congalton, R.G., 1998. A Quantitative Comparison of Change Detection Algorithms for Monitoring Eelgrass from Remotely Sensed Data. Photogrammetric Engineering & Remote Sensing. Vol. 64. No. 3. p. 207 - 216.
[43] Maniatis, D., 2005. Retrospective Study of the Mangroves of the Tanbi Wetland Complex, The Gambia.
[44] Masek, J.G., Vermote, E.F., Saleous, N., Wolfe, R., Hall, F.G., Huemmrich, F., Gao, F., Kutler, J., and Lim, T.K., 2006. A Landsat Surface Reflectance Data Set for North
America, 1990-100, IEEE Geoscience and Remote Sensing Letters. 3:68-72.
[45] Meyer, W.B., 1995. Past and Present Land-Use and Land-Cover in the U.S.A. Consequences. P.24-33.
[46] Morie, N.D., 2007. Land Use and Land Cover Changes in Harenna Forest and Surrounding area, Bale Mountains National Park, Oromia National Regional State, Ethiopia.
[47] Moshen, A., 1999. Environmental Land Use Change Detection and Assessment Using with Multi – temporal Satellite Imagery. Zanjan University.
[48] NEA, 2010. State of the Environment Report – The Gambia, 2ed. Kanifing: Fulladu Publishers.
[49] Olorunfemi, J.F., 1983. Monitoring Urban Land – Use in Developed Countries – An aerial photographic approach, Environmental Int.9, 27 – 32.
[50] Pouncey, R., Swanson, K., and Hart, K., 1999. ERDAS field Guide Fifth Edition, Revised
and Expanded, ERDAS Field Guide™ Copyright, ERDAS® Inc. All rights reserved.
[51] Republic of The Gambia, 1996. Vision 2020 Document.
[52] Richards, J. A., and Jia, X., 1999. Remote Sensing Digital Image Analysis: An
Introduction, 3d ed. Berlin: Springer-Verlag.
[53] Riebsame, W.E., Meyer, W.B., and Turner, B.L. II., 1994. Modeling Land-use and Cover as Part of Global Environmental Change. Climate Change. Vol. 28. p. 45.
[54] Shaoqing, Z., and Lu, X., 2008. The Comparative Study of Three Methods of Remote Sensing Image Change Detection. The International Archives of the Photogrammetry,
Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B7. Beijing.
[55] Singh, A., 1989. Digital Change Detection Techniques Using Remotely Sensed Data. International Journal of Remote Sensing. Vol. 10, No. 6, p. 989-1003.
[56] Son, N.T., and Chen, C.F., 2013. Remote Sensing of Mangrove Forests in Central America.
[57] Son, N.T., Chen, C.F., Chen, C.R., Chang, L.Y., Thanh, B. X., 2012. Urban Growth
Mapping from Landsat Data Using Linear Mixture Model in Ho Chi Minh City, Vietnam. J. Appl. Remote Sens. 6(1), 063543 (Jun 21, 2012). doi:10.1117/1.JRS.6.063543.
[58] Swain, P.H., and Wacker, A.G., 1971. Comparison of the Divergence and B-Distance in Feature Selection. Laboratory for the Applications of remote Sensing. Purdue University,
West Lafayette, Indiana 47906, 12 pp.
[59] Tappan, G.G., and Cushing, W.M., 2004. West Africa Land Use and Land Cover Trends Project. Gambia Land Use and Land Cover Maps and Trends. http://lca.usgs.gov/lca/africalulc/results.php#gambia_lulc. Retrieved: 05-06-2014.
[60] Tappan, G.G., Hadji, A., Wood, E.C., and Lietzow, R.W., 2000. Use of Argon, Corona, and Landsat Imagery to Assess 30 Years of Land Resource Changes in West-Central
Senegal. Photogammetric Engineering & Remote Sensing Vol. 66, No. 6, June 2000, pp. 727-735.
[61] Teas, H. J., and McEwan, R. J., 1982. An Epidemic Dieback Gall Disease of Rhizophora Mangroves in The Gambia, West Africa. Plant Disease 66:522-523.
[62] Twilley, R. R., 1985. An Analysis of Mangrove Forests along The Gambia River Estuary: Implications for the Management of Estuarine Resources.
[63] UNEP, 2007. Mangroves of Western and Central Africa. UNEP-Regional Seas Programme/UNEP-WCMC.
[64] UNHCR, 2002. Statistical Yearbook Country Data Sheet – Gambia. http://www.unhcr.org/414ad57f0.html. Retrieved: 15-06-2014.
[65] USGS, 2013. http://landsat.usgs.gov/descriptions_for_the_levels_of_processing.php. Retrieved: 10-06-2014.
[66] USGS, 2013. Landsat Surface Reflectance products courtesy of the U.S. Geological Survey Earth Resources Observation and Science Center.
[67] USGS, 2014. http://landsat.usgs.gov/Landsat_Processing_Details.php. Retrieved: 10-06-2014.
[68] Vapnick, V. N., 1998. Statistical Learning Theory. John Wiley and Sons Inc.
[69] Vapnik, V. N., 2000. The Nature of Statistical Learning Theory. Springer, New York, 2nd edition.
[70] Xiaomei, Y., and Ronqing, L.Q. Y., 1999. Change Detection Based on Remote Sensing Information Model and its Application to Coastal Line of Yellow River Delta – Earth
Observation Center, NASDA, China.
指導教授 陳繼藩(Chi-Farn Chen) 審核日期 2014-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明