以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:128 、訪客IP:18.119.162.226
姓名 賴宥丞(You-Cheng Lai) 查詢紙本館藏 畢業系所 生物物理研究所 論文名稱 自我推進粒子模擬生物所形成圖像之相圖及圖像形成時間之物理研究
(Phase diagram and formation time for self-propelling particles in two dimensions)檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在許多生物物種例如鳥群、魚群以及細菌等所呈現出各種不同迷人的群體行為的吸引之下,我們試著使用自我推進粒子來模擬生物群體在二維空間中的行為。這些粒子受到自我驅動力的驅動之下在一個有阻力的環境中運動,並由於粒子之間的距離遠近不同,這些粒子彼此會產生互相吸引,排斥以及方向上的排列。在這篇論文中,我們主要著重在自我推進粒子在有限的空間中,在不同的驅動力的強度和範圍下所呈現出的狀態(相)。我們利用驅動力的強度及範圍的不同來建構我們的相圖,並且利用各個不同狀態的出現機率來定義相的邊界。此外,藉著觀察穩定狀態形成過程的動畫,我們假設了一個簡化的物理圖像來描述穩定有序狀態的形成過程,並且利用這個圖像來分析從無序至穩定有序狀態的形成機制。首先我們先試著找出形成時間與圖像關係,我們使用了兩個方法來決定且確認穩定狀態的形成時間,第一個方法是藉著在特徵速度上設定判斷標準來決定形成時間,第二個方法則是利用數值分析的方法找出序參數曲線的特徵值來決定形成時間。 摘要(英) Motivated by intriguing flocking behaviors of biological species such as birds, fish and bacteria, we present particle-based simulations for the flocking of self-propelling particles in two dimensional spaces. The particles are under self-propelling motion in a viscous environment. Depending on the inter-particle distance,
they attract, repel and align their direction of motion with respect to each other. In this thesis, we focus on the phases for finite-size flocks at different amplitude and range of alignment force. We use amplitude and range of alignment force to construct the phase diagram, and
define the phase boundary that separates vortex state from marching state is obtained by constructing the histogram for their appearances. Moreover, by observing the formation process using animations, we give a simplifying physical picture to describe the formation process for steady states, and use this picture to analyze mechanisms for formation times of such steady states from an nitially disordered state. In formation process, we use two methods to measure and confirm the results of formation time. First method use a threshold value on the history of characteristic velocity as our criteria, and second method use the numerical analysis for order parameter curve to measure the formation time.關鍵字(中) ★ 圖
★ 像形成時間
★ 我推進粒子
★ 圖像形成
★ 群體行為關鍵字(英) ★ flocking
★ phase diagram
★ pattern formation
★ self-propelling particles
★ formaion time論文目次 Contents
1 Introduction 1
2 Model and algorithms 4
2.1 Langevin equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 Euler algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Periodic boundary conditions (PBC) . . . . . . . . . . . . . . . . 11
2.3.3 Finite size effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Phase diagram 13
3.1 Phases of themodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Algorithms to distinguish different phases . . . . . . . . . . . . . . . . . 18
3.3 Differentiating different rotating structures . . . . . . . . . . . . . . . . . 22
3.4 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4 Formation time for stable states 32
4.1 Picture for formation process and characterizing parameters . . . . . . . 32
4.2 Formation time ofmarching state using threshold in steady state . . . . . 37
4.2.1 Formation time for different space size . . . . . . . . . . . . . . . 38
4.2.2 Formation time for different numbers of particle . . . . . . . . . . 41
4.3 Formation time ofmarching state via an order parameter . . . . . . . . . 45
5 Incomplete work 55
6 Conclusion 56
A Energy and structure 58
References 63參考文獻 [1] J.K. Parrish, S.V. Viscido, and D. Gr‥unbaum, Biol. Bull. 202, 296 (2002).
[2] Riedel, I. H., K. Kruse, and J. Howard, Science 309, 300-303 (2005).
[3] Ch. Becco, N. Vandewlle, J. Delcourt, P. Poncin, Physica A. 367, 487-493 (2006).
[4] N. Shimoyama, K. Sugawara, T. Mizuguchi, Y. Hayakawa, and M.sano, Phys. Rev. Lett. 76, 3870 (1996).
[5] Yuhai Tu, Physica A. 281 30-40 (2000).
[6] B. Szab’o, G. J. Sz‥oll‥osi, B. G‥onci, Zs. Jur’anyi, D.Selmeczi, and Tam’as Vicsek, Phys. Rev. E. 74, 061908 (2006).
[7] M. Matsushita, J.-I. Wakita, and T.Matsuyama, in Spatio-Temporal patterns in
Nonequilibrium Complex System, ed. P.E. Cladis and P.Palffy-Muhoray, Santa-Fe Institute Studies in the Sciences of Complexity (Reading, Mass.: Addison-Weseley Publishing Company), pp.609-618 (1995).
[8] E. Ben-Jacob, I.Cohen, and H. Levin, Adv. Phys. 49, 395 (2000).
[9] W-J. Rappel, A. Nicol, A. Sarkissian, H. Levin, and W.F. Loomis, Phys. Rev. Lett. 83, 1247 (1999).
[10] J. Toner, and Y. Tu, Phys. Rev. Lett. 75. 4326 (1995).
[11] J. Toner, and Y. Tu, Phys. Rev. E, 58, 4828 (1998).
[12] Guillaume Gr’egoire, Hugues Chat’e, Yuhai Tu, Physica D. 181 157-170 (2003).
[13] H. Levine, W-J Rappel, and I. Cohen, Phys. Rev. E 63, 017101 (2000).
[14] Andr’as Czir’ok, Tam’as Vicsek, Physica A, 281, 17-29 (2000).
[15] N. G. van Kampen, Stochastic Processes in Physics and Chenistry, revised edition. (North-Holland, Amsterdam, 1992).
[16] J. L. Barrat and J. P. Hansen, Basic Concepts for Simple and Complex Liquids. (Cambridge University Press, 2003).
[17] Hsuan-Yi Chen and Kwan-tai Leung, Phys. Rev. E. 73, 056107 (2006).
[18] M. R. D’Orsogna, Y. L. Chuang, A. L. Bertozzi, andd L. S. Chayes, Phys. Rev. Lett. 96 104302 (2006).
[19] Tam’as Vicsek, Andr’as Czir’ok, Eshel Ben-Jacob, Inon Cohen, and Ofer Shochet, Phys. Rev. Lett. 75 1226 (1995).
[20] W.-T. Juan, Z.-H. Huang, J.-W. Hsu, Y.-J. Lai, and L. I., Phys. Rev. E 58, R6947 (1998).
[21] U. Erdmann, W. Ebeling, and V. S. Anishchenko, Phys, Rev. E 65, 061106 (2002).
[22] Couzin, I. D., Krause, J., Franks, N. R. and S. A. Levin, Nature 433, 513-516.指導教授 梁鈞泰(Kwan-tai Leung) 審核日期 2008-7-21 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare