參考文獻 |
Allen, D. M. (1974). The relationship between variable selection and data augmentation and a method for prediction. Technometrics 16, 125-127.
Binder, H., Allignol, A., Schumacher, M., and Beyersmann, J. (2009). Boosting for high-dimensional time-to-event data with competing risks. Bioinformatics 25, 890-896.
Cule, E., Vineis, P. and De Iorio, M. (2011). Significance testing in ridge regression for genetic data. BMC Bioinformatics 12, 372.
Dicker, A. P., and Rodeck, U. (2005). Predicting the future from trials of the past: epidermal growth factor receptor expression and outcome of fractionated radiation therapy trials. Journal of Clinical Oncology 23, 5437-5439.
Emura, T., Chen, Y. H., and Chen, H. Y. (2012). Survival prediction based on compound covariate under cox proportional hazard models. PLoS ONE 7, e47627.
Emura, T., and Chen, Y. H. (2014). Gene selection for survival data under dependent censoring: a copula-based approach. Statistical Methods in Medical Research, DOI: 10.1177/0962280214533378.
Golub, G. H., Heath, M. and Wahba, G. (1979). Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 21, 215-223.
Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning. Springer-Verlag, New York.
Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12, 55-67.
Ing, C.-K. and Lai, T.-L. (2011). A stepwise regression method and consistent model selection for high-dimensional sparse linear models. Statistica Sinica 21, 1473-1513.
Jenssen, T. K., Kuo, W. P., Stokke, T., et al. (2002). Association between gene expressions in breast cancer and patient survival. Hum Genet 111, 411-420.
Kim, S.-Y. and Lee, J.-W. (2007). Ensemble clustering method based on the resampling similarity measure for gene expression data. Statistical Methods in Medical Research 16, 539-564.
Loesgen, K.-H. (1990). A generalization and Bayesian interpretation of ridge-type estimators with good prior means. Statistical Papers 31, 147-154.
Matsui, S. (2006). Predicting survival outcomes using subsets of significant genes in prognostic marker studies with microarrays. BMC Bioinformatics 7, 156.
Mallows, C. L. (1973). Some comments on Cp. Technometrics 15, 661-675.
McLachlan, G. J. (1980). On the mean square error associated with adaptive generalized ridge regression. Biometrical Journal 22, 125-129.
Trenkler, G. (1985). Mean square error matrix comparisons of estimators in linear regression. Communications in Statistics A14, 2495-2509.
Trenkler, G., and Tourenburg, H. (1990). Mean squared error matrix comparisons between biased estimators – an overview of recent results. Statistical Papers 31, 165-179.
Wain, J. M., Bruford, E. A., and Lovering, R. C., et al. (2002). Guidelines for human gene nomenclature. Genomics 79, 464-470.
Whittaker, J. C., Thompson, R., and Denham, M. C., (2000). Marker-assisted selection using ridge regression. Genetical Research 75, 249-252.
Yanagihara, H., and Satoh, K. (2010). An unbiased Cp criterion for multivariate ridge regression. Journal of Multivariate Analysis 101, 1226-1238.
Zhao, X., Rødland, E. A., and Sørlie, T., et al. (2011). Combining gene signatures improves prediction of breast cancer survival. PLoS ONE 6, e17845.
|