博碩士論文 101522601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.191.171.10
姓名 項成凱(Cheng-kai Xiang)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 使用慣性傳感器構建即時人體骨架動作
(Using Multiple Inertial Sensors for the Construction of Real-time Human Skeleton Animation)
相關論文
★ 基於edX線上討論板社交關係之分組機制★ 利用Kinect建置3D視覺化之Facebook互動系統
★ 利用 Kinect建置智慧型教室之評量系統★ 基於行動裝置應用之智慧型都會區路徑規劃機制
★ 基於分析關鍵動量相關性之動態紋理轉換★ 基於保護影像中直線結構的細縫裁減系統
★ 建基於開放式網路社群學習環境之社群推薦機制★ 英語作為外語的互動式情境學習環境之系統設計
★ 基於膚色保存之情感色彩轉換機制★ 一個用於虛擬鍵盤之手勢識別框架
★ 分數冪次型灰色生成預測模型誤差分析暨電腦工具箱之研發★ 基於多台攝影機即時三維建模
★ 基於互補度與社群網路分析於基因演算法之分組機制★ 即時手部追蹤之虛擬樂器演奏系統
★ 基於類神經網路之即時虛擬樂器演奏系統★ 即時手部追蹤系統以虛擬大提琴為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自從人類製造使用機器以來,人機互動就是成為十分重要的議題。近年來,隨著電腦產業的不斷更迭,人機互動也進入了新的時代。
以影像處理為核心技術的微軟體感感測器Kinect,雖然有較為成熟的技術和十分方便的使用結果,但是由於影像採集所需要的在視線範圍內的缺憾,使用者必須站在深度相機能照到的範圍內,並且極易受到環境內的物件的干擾。本項目針對佩戴式的體感偵測的方法進行系統、深入地研究,以期通過使用現在發展迅速的感測器技術結合演算法,從而達到有效穩定的即時體感偵測系統。鑒於已經有一部分的佩戴式體感偵測的研究,本專案擬解決一下幾個關鍵技術,並取得相應創新性成果:第一,更高效,精確,小體積的體感偵測系統;第二,更好的移植性,使得系統可以真正的應用到現在生活所需,例如智慧電視等平臺。最後,將預期的系統與微軟體感感測器進行比較,以驗證成果的正確性和可能性。本系統使用多顆傳感器,構成人體感測網路,結果也還可應用於複健領域。
摘要(英) Research in Human-Computer Interaction (HCI) has gained interest in recent years and has fostered new ideas and expectations.
As the development of computer science, HCI has got into a new era. There are many kinds of human motion capture methods nowadays. Image based motion tracking system like Microsoft Kinect, it′s good for use and easy for coding, but it still has disadvantages. This kind of method camera and human have to be line of sight (LOS), and it will be easily disturb by the object in the environment.
In this progress, we have compared 2 kinds of methods which are the most popular methods in HCI – Microsoft Kinect Sensor and Inertial Sensors. This progress presents a wearable real-time human motion capture system using inertial sensors, and result of our method has been compared with Microsoft Kinect Sensor. Some research have been done, in this progress several technology we want to achieve as following:
1. An efficient accurate motion tracking system;
2. We can use this system into daily life, like smart TV etc.
Several experiments have been performed to validate the effectiveness of our method. Our system using multiple sensors build a body sensor network system, and this system can also be used in Rehabilitation domain;
關鍵字(中) ★ 人機互動
★ 體感偵測
★ 虛擬實境
★ 穿戴式
★ 人體感測網路
★ 複健
關鍵字(英) ★ HCI
★ Motion tracking
★ Virtual reality
★ Wearable
★ Body sensor network
★ Rehabilitation
論文目次 摘要 i
Abstract ii
Acknowledgements iii
Contents iv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background 3
1.3 Thesis Organization 3
Chapter 2 Related Works 5
2.1 Human Computer Interactive 6
2.1.1 Image Based Motion Capture 8
2.1.2 IR Image Based Motion Capture 10
2.1.3 Inertial Sensor Based Motion Capture 18
2.2 Describe of Motion 23
2.2.1 Euler Angle 23
2.2.2 Walking Estimation 25
2.3 Kinematics 28
2.3.1 Forward Kinematics 30
2.3.2 Inverse Kinematics 31
2.4 Kalman Filter 32
2.5 Back Propagation Neural Network 33
Chapter 3 Proposed Method 36
3.1 System Overview 36
3.1.1 Hardware Design 37
3.1.2 Model Design 38
3.2 Human Model Construction 39
3.2.1 Kinematics Human Model 40
3.2.2 Range of Motion 41
3.3 Extended Kalman Filter 46
3.3.1 Processing Model 46
3.3.2 Angle calculation 47
3.4 Gait Estimation 49
Chapter 4 Experimental Results and Discussions 52
4.1 Comparing with Kinect Result 52
4.1.1 Motion Tracking 52
4.1.2 Coordinate Diagram 55
4.2 Applications 57
4.2.1 Game Control 58
4.2.2 Walking Estimating 58
Chapter 5 Conclusions and Future Works 61
5.1 Conclusions 61
5.2 Future Works 63
References 64
參考文獻 [1] E. Foxlin and M. Harrington, “Weartrack: A self-referenced head and hand tracker for wearable computers and portable VR,” International Symposium on Wearable Computers, Atlanta, GA, USA, 16-17, pp. 155–162, 2000.
[2] J. C. Lementec and P. Bajcsy, “Recognition of arm gestures using multiple orientation sensors: gesture classification,” The 7th International IEEE Conference on Intelligent Transportation Systems, Washington DC, USA, 3-6, pp. 965–970, 2004.
[3] J. Lee and I. Ha, “Sensor fusion and calibration for motion captures using accelerometers,” Proc. IEEE International Conference on Robotics and Automation, pp. 1954-1959, 1999.
[4] R. Zhu and Z. Zhou, “A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors Package,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.12, no. 2, pp. 295-302, 2004.
[5] X. Yun, C. Aparicio, E. R. Bachmann, and R. B. McGhee, “Implementation and experimental results of a quaternion-based Kalman filter for human body motion tracking,” Proc. IEEE International Conference on Robotics and Automation, pp. 317-322, 2005.
[6] X. Yun and E. R. Bachmann, “Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking,” IEEE Transactions on Robotics, vol. 22, no. 6, pp.1216-1227, 2006.
[7] H. J. Luinge, P. H. Veltink, and C. T. M. Baten, “Ambulatory measurement of arm orientation,” Journal of Biomechanics, vol. 40, no. 1, pp. 78-85, 2007.
[8] A. Baumberg and D. Hogg, “An Efficient Method for Contour Tracking Using Active Shape Models,” Proc. Workshop Motion of Nonrigid and Articulated Objects. Los Alamitos, Calif.: IEEE CS Press, 1994.
[9] German K. M. Cheung and Jean-Yves Bouguet, “A Real Time System for Robust 3D Voxel Reconstruction of Human Motions,” Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference: vol.2, no. 2, pp. 714-720, Jun. 2000.
[10] Kazuyuki Imagawa, Shan Lu and Seiji Igi, “Color-Based Hands Tracking System for Sign Language Recognition,” Automatic Face and Gesture Recognition, 1998. IEEE Conference Proceedings: vol. 14, no.14, pp. 462-467, Apr 1998.
[11] H. Zhou, H. Hu, and Y. Tao, “Inertial Measurements of Upper Limb Motion,” Medical and Biological Engineering and Computing, vol. 44, no. 6, pp. 479-487, 2006.
[12] K. Kiguchi, M. H. Rahman, and T. Yamaguchi, “The Development and Test of a Device for the Reconstruction of 3-D Position and Orientation by Means of a Kinematic Sensor Assembly With Rate Gyroscopes and Accelerometers,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 7, pp. 1271-1277, 2005.
[13] H. Zhou, T. Stone, H. Hu, and N. Harris, “Use of Multiple Wearable Inertial Sensors in Upper Limb Motion Tracking,” Medical Engineering & Physics, vol. 30, no. 1, pp. 123-133, 2008.
[14] J. Lee and I. Ha, “Sensor fusion and calibration for motion captures using accelerometers,” in Proceedings of IEEE International Conference on Robotics and Automation pp. 1954-1959, 1999.
[15] R. Zhu and Z. Zhou, “A Real-Time Articulated Human Motion Tracking Using Tri-Axis Inertial/Magnetic Sensors Package,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, no. 2, pp. 295-302, 2004.
[16] X. Yun, C. Aparicio, E. R. Bachmann, and R. B. McGhee, “Implementation and experimental results of a quaternion-based Kalman filter for human body motion tracking,” in Proceedings of IEEE International Conference on Robotics and Automation, pp. 317-322, 2005.
[17] X. Yun and E. R. Bachmann, “Design, Implementation, and Experimental Results of a Quaternion-Based Kalman Filter for Human Body Motion Tracking,” IEEE Transactions on Robotics, vol. 22, no. 6, pp.1216-1227, 2006.
[18] H. J. Luinge, P. H. Veltink, and C. T. M. Baten, “Ambulatory measurement of arm orientation,” Journal of Biomechanics, vol. 40, no. 1, pp. 78-85, 2007.
[19] Kong Y.Chen and David R. Bassett Jr., The Technology of Accelerometry-Based Activity Monitors: Current and Future, Medicine & Science in Sports & Exercise. 37(11) Supplement: S490-S500, November 2005.
[20] Scott. E. Crouter, Patrick L. Schneider, Murat Karabulut, and David R. Bassett Jr, “Validity of 10 Electronic Pedometers for Measuring Steps, Distance, and Energy Cost,” Medicine and Science in Sports and Exercise, 35(8):1455-1460, August 2003.
[21] Patrick L. Schneider, Scott E. Crouter, Olivera Lukajic, and David R.Bassett Jr., “Accuracy and Reliability of 10 Pedometers for Measuring Steps over a 400-m Walk,” Medicine & Science in Sports & Exercise.35(10):1779-1784, October 2003.
[22] Ion P. I Pappas, Milos R. Popovic, Thierry Kell, Volker Dietz, and Manfred Morari, “A Reliable Gait Phase Detection System,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 9, issue. 2, pp. 113-125 , June 2001.
[23] Wiebren Zijlstra and At L. Hof, “Displacement of the pelvis during human walking: experimental data and model predictions,” Gait and Posture, vol. 6, no. 3, pp. 249-262 , December 1997.
[24] Wiebren Zijlstra and At L. Hof, “Assessment of spatio-temporal gait parameters from trunk accelerations during human walking,” Gait & Posture, vol. 18, issue. 2, pp. 1-10 October 2003.
[25] Koichi Sagawa, Yutaka Satoh, and Hikaru Inooka, “Non-restricted Measurement of Walking Distance,” in Proceedings of IEEE International Conference on Systems, Man, and Cybernetics, vol. 3, Nashville, TN., pp. 1847-1852 , October 2000.
[26] Angelo M. Sabatini, Chiara Martelloni, Sergio Scapellato, and FilippoCavallo, “Assessment of walking features from foot inertial sensing,” IEEE Transactions on Aerospace and Electronics Systems, vol. 52, no. 3, pp. 486-494, Mar. 2005.
[27] Filippo Cavallo, Angelo M. Sabatini, and Vincenzo Genovese, “A step toward GPS/INS personal navigation systems: real-time assessment of gait by foot inertial sensing,” in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005. (IROS 2005), Edmonton, Alberta, Canada, pp. 1187-1191 August 2005.
指導教授 施國琛(Timothy K. Shih) 審核日期 2014-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明