博碩士論文 952211014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.222.179.96
姓名 張凱廸(Kai-Di Jhang)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 躁鬱症病患的精子之DNA 甲基化的網路分析
(DNA methylation Network analysis on bipolar disorder sperm)
相關論文
★ 發展酵素非限制性全基因體調控因子解析方法★ 利用健保資料庫探討常見複雜疾病之中草藥處方研究
★ 主觀影響療癒的案例與主觀在醫療重要性的探討★ 精神分裂症病患與正常人之DNA甲基化網絡的差異
★ Cloud-R:以R軟體與雲端技術為基礎的生物統計應用網站★ 中草藥藥性與中草藥遺傳演化樹之關係
★ 利用階層式叢集及不同分類方法分析人類正常組織特異性基因★ 由ENCODE計畫分析脫氧核醣核酸酶I與組蛋白修飾
★ 皮膚痣圖片毛髮辨識去除★ 中醫癌症處方多由癰瘍、和解之劑與寒方組成,並隨氣溫下降而更改組成
★ 主成分分析與叢集分析於DNA微陣列數據前處理的應用與實作★ 確認與中醫處方有關的環境和社會經濟變數
★ 與中醫處方有關的社會經濟變量關係網絡的確認與分析★ 開發CNN模型預測學生是否退學— 練習如何建立AI模型以從NGS短序列片段數據中偵測SNP
★ 深度 Q 網絡學習用於加護病房敗血症治療★ 比較線性模型、多層感知器和卷積神經網絡在回歸分析應用中的性能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 躁鬱症是常見的一種複雜型精神疾病。它透過體染色體及X染色體在家族的個體中遺傳,除此之外它也受到環境因素影響,如化學要素或情緒壓力等。DNA甲基化在表觀遺傳學中佔重要角色,它在DNA遺傳序列以外建立改變生物性狀並且可以遺傳的機制。於是我們以偵測DNA甲基化的CpG 小島微陣列晶片(包含13056個探針) 來分析躁鬱症病患與正常人精子裡DNA甲基團的分佈,並藉由統計學裡的淨相關來計算微陣列數據中探針間的相關性。無論是質譜儀、基因體染色質免疫沉澱或是其他高通量實驗數據,圖型模型是一個適合資料探勘與整合的分析方式。我們以圖型化高斯模型來表示這些CpG小島中甲基團密度變化量的相依性,並且探討圖型結構中的特性 ─ 模數、度協調、叢集係數等─及註解其生物意義。
摘要(英) Manic depression disorder is a complex heritable disease in that its heredity comes from genetic abnormalities in somatic and X chromosomes. Beside genetic factor, environment factors also affect the disease’’s susceptibility. DNA methylation plays a role in epigenetics and is considered to serve as a bridge between genetic and environmental factors. In this thesis, we describe a genome-wide DNA methylation dataset of 19 bipolar disorder (manic depression) and 18 normal individuals using human CpG island microarrays (containing 13056 probes). Then we analyze the methylation relations among the measuring probes using Graphical Gaussian models for each phenotypic group, obtaining networks of co-methylation. Modularity, assortativity and clustering coefficient properties of the networks are calculated. Genes involved in co-methylation are grouped and annotated by Gene Ontology terms. Candidate genes have some implications to the disorder.
關鍵字(中) ★ DNA甲基化
★ CpG小島
★ 網路分析
★ 躁鬱症
★ 表觀遺傳學
★ 淨相關
★ 微陣列
★ 圖形化高斯模型
關鍵字(英) ★ DNA microarray
★ partial correlation
★ cpg island
★ DNA methylation
★ epigenetic
★ bipolaar disorder
★ Manic depression
★ graphical gaussian model
★ network
論文目次 中文摘要 ............................I
英文摘要 ............................II
誌謝詞 ............................III
目錄 ............................IV
圖目錄 ............................V
表目錄 ............................VI
壹、研究背景介紹............................1
1-1 表觀遺傳學 (epigenetics) ............................1
1-1-1 遺傳性質 ............................3
1-2 DNA甲基化與DNA甲基轉移酶 ............................5
1-3 印記作用 (imprinting)與X染色體失活 (X-inactivation) ............................10
1-3-1 印記作用 (imprinting) ............................10
1-3-2 X染色體失活 (X chromosome inactivation) ............................13
1-4 表觀遺傳學與精神疾病 ............................15
貳、研究方法與材料............................18
2-1 CpG 微陣列實驗 (CpG microarray experiment) ............................18
2-2 圖形式高斯模型 (Graphical Gaussian models) ............................20
2-3模數 (modularity)、度協調 (assortativity)、叢集係數(clustering coefficient) ............................23
2-4 GO term overrepresentation ............................26
參、結果 ............................29
肆、結論 ............................39
伍、參考文獻 ............................41
參考文獻 [1]A. Bird, “DNA methylation patterns and epigenetic memory”, Genes Dev., 16, 6–21, 2022
[2]M.G. Goll, and T.H. Bestor , “Eukaryotic cytosine methyltransferases” Annu. Rev. Biochem, 74, 481–514, 2005
[3] R. Margueron, P. Trojer, and D. Reinberg, “The key to development: interpreting the histone code?” Curr. Opin. Genet. Dev. 15, 163–176, 2005
[4] S.W. Chan , I.R. Henderson, and S.E. Jacobsen, “Gardening the genome: DNA methylation in Arabidopsis thaliana”, Nat. Rev. Genet. 6, 351–360, 2005
[5] T.R. Haines, D.I. Rodenhiser, and P.J. Ainsworth, “Allelespecific non-CpG methylation of the Nf1 gene during early mouse development”, Dev. Biol, 240, 585–598, 2001
[6] M.G. Pray-Grant, J.A. Daniel, D. Schieltz, J.R. Yates, 3rd, and P.A. Grant, “Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation”, Nature 433, 434–438, 2005
[7] R.J. Sims, 3rd, C.F. Chen, H. Santos-Rosa, T. Kouzarides, S.S. Patel, and D. Reinberg , “Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains”, J. Biol. Chem. 280, 41789–41792, 2005
[8] W. Fischle, Y. Wang, S.A. Jacobs, Y. Kim, C.D. Allis, and S. Khorasanizadeh, “ Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains”, Genes Dev. 17, 1870–1881, 2003
[9] S.I. Grewal , and D. Moazed, “Heterochromatin and epigenetic control of gene expression”, Science 301, 798–802, 2003
[10] R. Singal, G.D. Ginder, “DNA methylation”, Blood 93, 4059–4070, 1999
[11] E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum , M.C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh et al, “Initial sequencing and analysis of the human genome”, Nature, 409, 860–921, 2001
[12] M.J. Fazzari, and J.M. Greally, “Epigenomics: beyond CpG islands”, Nat. Rev. Genet. 5, 446–455, 2004
[13] J. Singer, J. Roberts-Ems, and A. D. Riggs, “Methylation of mouse liver DNA studied by means of the restriction enzymes msp I and hpa II”, Science, 203, 1019–1021, 1979
[14] M. Gardiner-Garden, & M.Frommer, “CpG islands in vertebrate genomes”, J. Mol. Biol. ,196, 261–282, 1987.
[15] D. Takai, and P.A. Jones, “Comprehensive analysis of CpG islands in human chromosomes 21 and 22”, Proc. Natl. Acad. Sci. USA, 99, 3740–3745, 2002
[16] M. Okano, D.W. Bell, D.A. Haber, and E. Li, “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development”, Cell, 99, 247–257, 1999
[17] K.D. Robertson, “DNA methylation and human disease”, Nat Rev Genet, 6, 597–610, 2005
[18] G . Liang, M.F. Chan, Y. Tomigahara , Y.C. Tsai, F.A. Gonzales , E. Li, P.W. Laird, P.A. Jones, “Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements” Mol Cell Biol, 22, 480–491, 2002
[19] C.L. Hsieh, “The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmt1”, BMC Biochem, 6, 6, 2005
[20] I. Rhee, K.W. Jair, R.W. Yen, C. Lengauer, J.G. Herman, K.W. Kinzler , B. Vogelstein , S.B. Baylin, K.E. Schuebel ,”CpG methylation is maintained in human cancer cells lacking DNMT1”, Nature, 404, 1003–1007, 2000
[21] I. Rhee, K.E. Bachman, B.H. Park, K.W. Jair, R.W. Yen, K.E. Schuebel, H. Cui, A.P. Feinberg, C. Lengauer , K.W. Kinzler, S.B. Baylin, B. Vogelstein,”DNMT1 and DNMT3b cooperate to silence genes in human cancer cells”, Nature, 416, 552–556, 2002
[22] M. Okano, S. Xie, E. Li, ”Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases”, Nat Genet, 19, 219–220, 1998
[23] B.H. Ramsahoye, D. Biniszkiewicz, F. Lyko, V. Clark, A.P. Bird, R. Jaenisch, ” Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a”, Proc Natl Acad Sci USA, 97, 5237–5242, 2000
[24] U. Aapola, K. Kawasaki, H.S. Scott, J. Ollila, M. Vihinen, M. Heino, A. Shintani , S. Minoshima , K. Krohn, S.E. Antonarakis, N. Shimizu ,J. Kudoh, P. Peterson, “ Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family”, Genomics, 65, 293–298, 2000
[25] L.M. Slater, M.D. Allen, M. Bycroft, “Structural variation in PWWP domains”, J. Mol Biol, 330, 571–576, 2003
[26] D. Bourc’his, G.L. Xu, C.S. Lin, B. Bollman, T.H. Bestor, “Dnmt3L and the establishment of maternal genomic imprints”, Science, 294, 2536–2539, 2001
[27] S. Ramchandani, S.K. Bhattacharya, N. Cervoni, and M. Szyf, “DNA methylation is a reversible biological signal”, Proc. Natl. Acad. Sci., 96, 6107–6112, 1999
[28] C. Kress, H. Thomassin, and T. Grange, “Local DNA demethylation in vertebrates: How could it be performed and targeted?”, FEBS Lett., 494, 135–140, 2001
[29] J-P. Jost, M. Siegmann, L. Sun and R. Leung, “Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase”, J. Biol. Chem., 270, 9734–9739, 1995
[30] A. Weiss, I. Keshet, A. Razin, and H. Cedar, “DNA demethylation in vitro: Involvement of RNA”, Cell, 86, 709–718, 1996
[31] J.F. Swisher, E. Rand, H. Cedar, and A. Marie Pyle, “Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts”, Nucleic Acids Res., 26, 5573–5580, 1998
[32] J. Kim, A. Kollhoff, A. Bergmann, and L. Stubbs, “Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3”, Hum. Mol. Genet., 12, 233–245 ,2003.
[33] A. P. Bird, & A. P. Wolffe, “Methylation-induced repression: belts, braces, and chromatin”, Cell, 99, 451–454, 1999.
[34] B. Panninf and R. Jaenisch, “DNA hypomethylation can activate Xist expression and silence X-linked genes”, Genes Dev., 10, 1991-2002, 1996
[35] I. Stancheva, C. Hensey, R.R. Meehan, “Loss of the maintenance methyltransferase, xDnmta, includes apoptosis in Xenopus embryos”, EMBO J., 20, 1963-1973, 2001
[36] L. Jackson-Grusby et al. “Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation”, Nat. Genet., 27, 31-39, 2001
[37] E. Li, T.H. Bestor and R. Jaenisch, “Targeted mutation of the DNA methyltransferase gene results in embryonic lethality”, Cell, 69, 915-926, 1992
[38] H. Lei et al. “de novo DNA cytosine methyltransferase activities in mouse embryonic stem cells”, Development, 122, 3195-3205, 1996
[39] C.P. Walsh, J.R. Chaillet and T.H. Bestor, “Transcription of IAP endogenous retroviruses is constrained by cytosine methylation”, Nat. Genet., 20, 116-117, 1998
[40 ] T. M. DeChiara, E. J. Robertson & A. Efstratidiadis, “Parental imprinting of the mouse insulin-like growth factorII gene”, Cell, 64, 849–859, 1991
[41] B. Neumann, P. Kubicka & D.P. Barlow, “Characteristics of imprinted genes”, Nature Genet., 9, 12–13, 1995
[42] S. A. Sheardown et al., “Stabilisation of Xist RNA mediates initiation of X chromosome inactivation”, Cell, 91, 99–107, 1997
[43] D. Warshawsky, N. Stavropoulos & J. T. Lee, “Further examination of the Xist promoter-switch hypothesis in X inactivation: evidence against the existence and function of a P0 promoter”, Proc. Natl Acad. Sci. USA , 96,14424–14429, 1999.
[44] L. P. O’Neill et al, “A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivation”, EMBO J., 18, 2897–2907, 1999
[45] G. D .Penny, G.F. Kay, S.A. Sheardown, S. Rastan, & N. Brockdorff, “Requirement for Xist in X chromosome inactivation”, Nature, 379, 131–137, 1996
[46] M.T. Ross, D.V. Grafham, A.J. Coffey, S. Scherer, K. McLay et al, “The DNA sequence of the human X chromosome”, Nature 434, 325–337, 2005
[47] J.A. Graves, “The evolution of mammalian sex chromosomes and the origin of sex determining genes” Philos Trans R Soc Lond B Biol Sci, 350,305–311; discussion 311–312, 1995
[48] L. Carrel , H.F. Willard, “X-inactivation profle reveals extensive variability in X-linked gene expression in females”, Nature 434, 400–404, 2005
[49] Zhong Wang et. Al, “Evidence of influence of genomic DNA sequence on human x chromosome inactivation”, plos computational biology, vol. 2, issue 9, 0970, 2006
[50] A. Akhtar, D. Zink, & P.B. Becker, “A chromodomain-RNA interaction targets MOF to the Drosophila X chromosome” Nature 407, 405–409, 2000
[51] S. L. Gilbert, J. R. Pehrson & P.A. Sharp, “XIST RNA associates with specific regions of the inactive X chromatin”, J. Biol. Chem., 275, 36491–36494, 2000
[52] S. L. Gilbert, & P. Sharp, “A Promoter-specific hypoacetylation of X-inactivated genes” Proc. Natl Acad. Sci USA 96, 13825–13830, 1999
[53] David Rodenhiser, Mellissa Mann, “Epigenetics and humman disease”, CMAJ 174, 341, 2006
[54] J.E. Sutherland, M. Costa, “Epigenetics and the environment” Ann N Y Acad Sci, 983, 151-60, 2003
[55] H.M. Abdilmaleky, C.L. Smith, S.V. Faraone et al, “Methylomics in psychiatry: Modulation of gene-environment interactions may be through DNA methylation”, Am J Med Genet B Neuropsychiatr Genet,127, 51-9, 2004
[56] W.E. Narrow, D.S. Rae, L.N. Robins, “Revised prevalence estimates of mental disorders in the United States: using a clinical significance criterion to reconcile 2 surveys’ estimates”, Arch. Gen. Psychiatry, 59, 115–123, 2002
[57] B. Muller-Oerlinghausen, A. Berghofer, M. Bauer, “Bipolar disorder”, Lancet, 359, 241–247, 2002
[58] C.J. Murray, A.D. Lopez, “Evidence based health policy – lessons from the global burden of disease study”, Science, 274, 740–743, 1996
[59] J.C. Soares, J.J. Mann, “The functional neuroanatomy of mood disorders”, J. Psychiatry Res., 31, 393–432, 1997
[60] W.C. Drevets, “Neuroimaging studies of mood disorders”, Biol. Psychiatry, 48, 813–829, 2000
[61] S.M. Strakowski, C.M. Adler, M.P. DelBello, “Volumetric MRI studies of mood disorders: do they distinguish unipolar and bipolar disorder?” Bipolar Disord. 4, 80–88, 2002
[62] S.M. Strakowski, M.P. DelBello, C.M. Adler, “The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings”, Mol. Psychiatry. PMID: 15340357, in press. 2004
[63] E.P. Hayden, Jr JI Nurnberger, “Molecular genetics of bipolar disorder”, Genes Brain Behav., 5: 85–95, 2006
[64] TADAFUMI KATO, “Molecular genetics of bipolar disorder and depression”, Psychiatry and Clinical Neurosciences, 61, 3–19, 2007
[65] A. Hashimoto, T. Nishikawa, T. Hayashi et al, “The presence of free d-serine in rat brain”, FEBS Lett., 296, 33–36, 1992
[66] H. Kishino and P.J. Waddell, “Correspondence analysis of genes and tissue types and finding genetic links from microarray data”, Genome Informatics, 11, 83–95, 2000
[67] J. Schäfer and K. Strimmer, “An empirical Bayes approach to inferring large-scale gene association networks”, Bioinformatics, 21(6), 754-764, 2005
[68] R. Penrose,” A generalized inverse for matrices” Proc. Cambridge Phil. Soc., 51, 406–413, 1955
[69] M.E.J. Newman, “Modularity and community structure in networks”, Proc. Natl. Acad. Sci. U.S.A. 103, 8577–8582, 2006
[70] A. Alexa, J. Rahnenfu¨ hrer and T. Lengauer, “Improved scoring of functional groups from gene expression data by decorrelating GO graph structure”, BIOINFORMATICS, 22, 1600–1607 2006.
[71] D. Edwards, “Introduction to Graphical Modelling” Springer, 2000.
[72] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. VespignaniThe, “architecture of complex weighted networks”, Proc. Natl. Acad. Sci. U.S.A. 103, 8577–8582, 2006.
[73] A. Schumacher et al., “Microarray-based DNA methylation profiling: technology and applications”, Nucleic Acids Research, 34(2), 528-542, 2006.
[74] M . Ashburner et. al., “Gene ontology: tool for the unification of biology. The Gene Ontology Consortium”, Nature Genet, 25(1):25-9, 2000.
[75] M. E. J. Newman, "Assortative mixing in networks", Physical Review Letters 89 (20): 208701, 2002
[76] C. C Friedel and R. Zimmer, “Inferring topology from clustering coefficients in protein-protein interaction networks”, BMC Bioinformatics, 7: 519, 2006
[77] M. Bauer, P.C. Whybrow, “Thyroid hormone, neural tissue and moodmodulation”, World J. Biol. Psychiatry 2, 57–67, 2001
[78] E. Hattori, C. Liu, J.A. Badner et al., “Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series”, Am. J. Hum. Genet., 72: 1131–1140, 2003.
[79] N.M. Williams, E.K. Green, S. Macgregor et al, “Variation at the DAOA/G30 locus influences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder. Arch. Gen. Psychiatry, 63:366–373, 2006.
[80] J.D.Bremner et. al., “Regional brain metabolic correlates of alpha-methylparatyrosine induced depressive symptoms: implications for the neural circuitry of depression” JAMA 289, 3125–3134, 2003.
[81] H. D. Morgan et. al., “Epigenetic reprogramming in mammals”, Human Molecular Genetics, Vol. 14, Review Issue 1 R47–R58, 2005.
[82] T. Tada, et al., “Epigenotype switching of imprintable loci in embryonic germ cells.” Dev. Genes Evol. 207, 551–561, 1998.
指導教授 王孫崇(Sun-chong Wan) 審核日期 2008-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明