參考文獻 |
[1]A. Bird, “DNA methylation patterns and epigenetic memory”, Genes Dev., 16, 6–21, 2022
[2]M.G. Goll, and T.H. Bestor , “Eukaryotic cytosine methyltransferases” Annu. Rev. Biochem, 74, 481–514, 2005
[3] R. Margueron, P. Trojer, and D. Reinberg, “The key to development: interpreting the histone code?” Curr. Opin. Genet. Dev. 15, 163–176, 2005
[4] S.W. Chan , I.R. Henderson, and S.E. Jacobsen, “Gardening the genome: DNA methylation in Arabidopsis thaliana”, Nat. Rev. Genet. 6, 351–360, 2005
[5] T.R. Haines, D.I. Rodenhiser, and P.J. Ainsworth, “Allelespecific non-CpG methylation of the Nf1 gene during early mouse development”, Dev. Biol, 240, 585–598, 2001
[6] M.G. Pray-Grant, J.A. Daniel, D. Schieltz, J.R. Yates, 3rd, and P.A. Grant, “Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation”, Nature 433, 434–438, 2005
[7] R.J. Sims, 3rd, C.F. Chen, H. Santos-Rosa, T. Kouzarides, S.S. Patel, and D. Reinberg , “Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains”, J. Biol. Chem. 280, 41789–41792, 2005
[8] W. Fischle, Y. Wang, S.A. Jacobs, Y. Kim, C.D. Allis, and S. Khorasanizadeh, “ Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains”, Genes Dev. 17, 1870–1881, 2003
[9] S.I. Grewal , and D. Moazed, “Heterochromatin and epigenetic control of gene expression”, Science 301, 798–802, 2003
[10] R. Singal, G.D. Ginder, “DNA methylation”, Blood 93, 4059–4070, 1999
[11] E.S. Lander, L.M. Linton, B. Birren, C. Nusbaum , M.C. Zody, J. Baldwin, K. Devon, K. Dewar, M. Doyle, W. FitzHugh et al, “Initial sequencing and analysis of the human genome”, Nature, 409, 860–921, 2001
[12] M.J. Fazzari, and J.M. Greally, “Epigenomics: beyond CpG islands”, Nat. Rev. Genet. 5, 446–455, 2004
[13] J. Singer, J. Roberts-Ems, and A. D. Riggs, “Methylation of mouse liver DNA studied by means of the restriction enzymes msp I and hpa II”, Science, 203, 1019–1021, 1979
[14] M. Gardiner-Garden, & M.Frommer, “CpG islands in vertebrate genomes”, J. Mol. Biol. ,196, 261–282, 1987.
[15] D. Takai, and P.A. Jones, “Comprehensive analysis of CpG islands in human chromosomes 21 and 22”, Proc. Natl. Acad. Sci. USA, 99, 3740–3745, 2002
[16] M. Okano, D.W. Bell, D.A. Haber, and E. Li, “DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development”, Cell, 99, 247–257, 1999
[17] K.D. Robertson, “DNA methylation and human disease”, Nat Rev Genet, 6, 597–610, 2005
[18] G . Liang, M.F. Chan, Y. Tomigahara , Y.C. Tsai, F.A. Gonzales , E. Li, P.W. Laird, P.A. Jones, “Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements” Mol Cell Biol, 22, 480–491, 2002
[19] C.L. Hsieh, “The de novo methylation activity of Dnmt3a is distinctly different than that of Dnmt1”, BMC Biochem, 6, 6, 2005
[20] I. Rhee, K.W. Jair, R.W. Yen, C. Lengauer, J.G. Herman, K.W. Kinzler , B. Vogelstein , S.B. Baylin, K.E. Schuebel ,”CpG methylation is maintained in human cancer cells lacking DNMT1”, Nature, 404, 1003–1007, 2000
[21] I. Rhee, K.E. Bachman, B.H. Park, K.W. Jair, R.W. Yen, K.E. Schuebel, H. Cui, A.P. Feinberg, C. Lengauer , K.W. Kinzler, S.B. Baylin, B. Vogelstein,”DNMT1 and DNMT3b cooperate to silence genes in human cancer cells”, Nature, 416, 552–556, 2002
[22] M. Okano, S. Xie, E. Li, ”Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases”, Nat Genet, 19, 219–220, 1998
[23] B.H. Ramsahoye, D. Biniszkiewicz, F. Lyko, V. Clark, A.P. Bird, R. Jaenisch, ” Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a”, Proc Natl Acad Sci USA, 97, 5237–5242, 2000
[24] U. Aapola, K. Kawasaki, H.S. Scott, J. Ollila, M. Vihinen, M. Heino, A. Shintani , S. Minoshima , K. Krohn, S.E. Antonarakis, N. Shimizu ,J. Kudoh, P. Peterson, “ Isolation and initial characterization of a novel zinc finger gene, DNMT3L, on 21q22.3, related to the cytosine-5-methyltransferase 3 gene family”, Genomics, 65, 293–298, 2000
[25] L.M. Slater, M.D. Allen, M. Bycroft, “Structural variation in PWWP domains”, J. Mol Biol, 330, 571–576, 2003
[26] D. Bourc’his, G.L. Xu, C.S. Lin, B. Bollman, T.H. Bestor, “Dnmt3L and the establishment of maternal genomic imprints”, Science, 294, 2536–2539, 2001
[27] S. Ramchandani, S.K. Bhattacharya, N. Cervoni, and M. Szyf, “DNA methylation is a reversible biological signal”, Proc. Natl. Acad. Sci., 96, 6107–6112, 1999
[28] C. Kress, H. Thomassin, and T. Grange, “Local DNA demethylation in vertebrates: How could it be performed and targeted?”, FEBS Lett., 494, 135–140, 2001
[29] J-P. Jost, M. Siegmann, L. Sun and R. Leung, “Mechanisms of DNA demethylation in chicken embryos. Purification and properties of a 5-methylcytosine-DNA glycosylase”, J. Biol. Chem., 270, 9734–9739, 1995
[30] A. Weiss, I. Keshet, A. Razin, and H. Cedar, “DNA demethylation in vitro: Involvement of RNA”, Cell, 86, 709–718, 1996
[31] J.F. Swisher, E. Rand, H. Cedar, and A. Marie Pyle, “Analysis of putative RNase sensitivity and protease insensitivity of demethylation activity in extracts from rat myoblasts”, Nucleic Acids Res., 26, 5573–5580, 1998
[32] J. Kim, A. Kollhoff, A. Bergmann, and L. Stubbs, “Methylation-sensitive binding of transcription factor YY1 to an insulator sequence within the paternally expressed imprinted gene, Peg3”, Hum. Mol. Genet., 12, 233–245 ,2003.
[33] A. P. Bird, & A. P. Wolffe, “Methylation-induced repression: belts, braces, and chromatin”, Cell, 99, 451–454, 1999.
[34] B. Panninf and R. Jaenisch, “DNA hypomethylation can activate Xist expression and silence X-linked genes”, Genes Dev., 10, 1991-2002, 1996
[35] I. Stancheva, C. Hensey, R.R. Meehan, “Loss of the maintenance methyltransferase, xDnmta, includes apoptosis in Xenopus embryos”, EMBO J., 20, 1963-1973, 2001
[36] L. Jackson-Grusby et al. “Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation”, Nat. Genet., 27, 31-39, 2001
[37] E. Li, T.H. Bestor and R. Jaenisch, “Targeted mutation of the DNA methyltransferase gene results in embryonic lethality”, Cell, 69, 915-926, 1992
[38] H. Lei et al. “de novo DNA cytosine methyltransferase activities in mouse embryonic stem cells”, Development, 122, 3195-3205, 1996
[39] C.P. Walsh, J.R. Chaillet and T.H. Bestor, “Transcription of IAP endogenous retroviruses is constrained by cytosine methylation”, Nat. Genet., 20, 116-117, 1998
[40 ] T. M. DeChiara, E. J. Robertson & A. Efstratidiadis, “Parental imprinting of the mouse insulin-like growth factorII gene”, Cell, 64, 849–859, 1991
[41] B. Neumann, P. Kubicka & D.P. Barlow, “Characteristics of imprinted genes”, Nature Genet., 9, 12–13, 1995
[42] S. A. Sheardown et al., “Stabilisation of Xist RNA mediates initiation of X chromosome inactivation”, Cell, 91, 99–107, 1997
[43] D. Warshawsky, N. Stavropoulos & J. T. Lee, “Further examination of the Xist promoter-switch hypothesis in X inactivation: evidence against the existence and function of a P0 promoter”, Proc. Natl Acad. Sci. USA , 96,14424–14429, 1999.
[44] L. P. O’Neill et al, “A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivation”, EMBO J., 18, 2897–2907, 1999
[45] G. D .Penny, G.F. Kay, S.A. Sheardown, S. Rastan, & N. Brockdorff, “Requirement for Xist in X chromosome inactivation”, Nature, 379, 131–137, 1996
[46] M.T. Ross, D.V. Grafham, A.J. Coffey, S. Scherer, K. McLay et al, “The DNA sequence of the human X chromosome”, Nature 434, 325–337, 2005
[47] J.A. Graves, “The evolution of mammalian sex chromosomes and the origin of sex determining genes” Philos Trans R Soc Lond B Biol Sci, 350,305–311; discussion 311–312, 1995
[48] L. Carrel , H.F. Willard, “X-inactivation profle reveals extensive variability in X-linked gene expression in females”, Nature 434, 400–404, 2005
[49] Zhong Wang et. Al, “Evidence of influence of genomic DNA sequence on human x chromosome inactivation”, plos computational biology, vol. 2, issue 9, 0970, 2006
[50] A. Akhtar, D. Zink, & P.B. Becker, “A chromodomain-RNA interaction targets MOF to the Drosophila X chromosome” Nature 407, 405–409, 2000
[51] S. L. Gilbert, J. R. Pehrson & P.A. Sharp, “XIST RNA associates with specific regions of the inactive X chromatin”, J. Biol. Chem., 275, 36491–36494, 2000
[52] S. L. Gilbert, & P. Sharp, “A Promoter-specific hypoacetylation of X-inactivated genes” Proc. Natl Acad. Sci USA 96, 13825–13830, 1999
[53] David Rodenhiser, Mellissa Mann, “Epigenetics and humman disease”, CMAJ 174, 341, 2006
[54] J.E. Sutherland, M. Costa, “Epigenetics and the environment” Ann N Y Acad Sci, 983, 151-60, 2003
[55] H.M. Abdilmaleky, C.L. Smith, S.V. Faraone et al, “Methylomics in psychiatry: Modulation of gene-environment interactions may be through DNA methylation”, Am J Med Genet B Neuropsychiatr Genet,127, 51-9, 2004
[56] W.E. Narrow, D.S. Rae, L.N. Robins, “Revised prevalence estimates of mental disorders in the United States: using a clinical significance criterion to reconcile 2 surveys’ estimates”, Arch. Gen. Psychiatry, 59, 115–123, 2002
[57] B. Muller-Oerlinghausen, A. Berghofer, M. Bauer, “Bipolar disorder”, Lancet, 359, 241–247, 2002
[58] C.J. Murray, A.D. Lopez, “Evidence based health policy – lessons from the global burden of disease study”, Science, 274, 740–743, 1996
[59] J.C. Soares, J.J. Mann, “The functional neuroanatomy of mood disorders”, J. Psychiatry Res., 31, 393–432, 1997
[60] W.C. Drevets, “Neuroimaging studies of mood disorders”, Biol. Psychiatry, 48, 813–829, 2000
[61] S.M. Strakowski, C.M. Adler, M.P. DelBello, “Volumetric MRI studies of mood disorders: do they distinguish unipolar and bipolar disorder?” Bipolar Disord. 4, 80–88, 2002
[62] S.M. Strakowski, M.P. DelBello, C.M. Adler, “The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings”, Mol. Psychiatry. PMID: 15340357, in press. 2004
[63] E.P. Hayden, Jr JI Nurnberger, “Molecular genetics of bipolar disorder”, Genes Brain Behav., 5: 85–95, 2006
[64] TADAFUMI KATO, “Molecular genetics of bipolar disorder and depression”, Psychiatry and Clinical Neurosciences, 61, 3–19, 2007
[65] A. Hashimoto, T. Nishikawa, T. Hayashi et al, “The presence of free d-serine in rat brain”, FEBS Lett., 296, 33–36, 1992
[66] H. Kishino and P.J. Waddell, “Correspondence analysis of genes and tissue types and finding genetic links from microarray data”, Genome Informatics, 11, 83–95, 2000
[67] J. Schäfer and K. Strimmer, “An empirical Bayes approach to inferring large-scale gene association networks”, Bioinformatics, 21(6), 754-764, 2005
[68] R. Penrose,” A generalized inverse for matrices” Proc. Cambridge Phil. Soc., 51, 406–413, 1955
[69] M.E.J. Newman, “Modularity and community structure in networks”, Proc. Natl. Acad. Sci. U.S.A. 103, 8577–8582, 2006
[70] A. Alexa, J. Rahnenfu¨ hrer and T. Lengauer, “Improved scoring of functional groups from gene expression data by decorrelating GO graph structure”, BIOINFORMATICS, 22, 1600–1607 2006.
[71] D. Edwards, “Introduction to Graphical Modelling” Springer, 2000.
[72] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. VespignaniThe, “architecture of complex weighted networks”, Proc. Natl. Acad. Sci. U.S.A. 103, 8577–8582, 2006.
[73] A. Schumacher et al., “Microarray-based DNA methylation profiling: technology and applications”, Nucleic Acids Research, 34(2), 528-542, 2006.
[74] M . Ashburner et. al., “Gene ontology: tool for the unification of biology. The Gene Ontology Consortium”, Nature Genet, 25(1):25-9, 2000.
[75] M. E. J. Newman, "Assortative mixing in networks", Physical Review Letters 89 (20): 208701, 2002
[76] C. C Friedel and R. Zimmer, “Inferring topology from clustering coefficients in protein-protein interaction networks”, BMC Bioinformatics, 7: 519, 2006
[77] M. Bauer, P.C. Whybrow, “Thyroid hormone, neural tissue and moodmodulation”, World J. Biol. Psychiatry 2, 57–67, 2001
[78] E. Hattori, C. Liu, J.A. Badner et al., “Polymorphisms at the G72/G30 gene locus, on 13q33, are associated with bipolar disorder in two independent pedigree series”, Am. J. Hum. Genet., 72: 1131–1140, 2003.
[79] N.M. Williams, E.K. Green, S. Macgregor et al, “Variation at the DAOA/G30 locus influences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder. Arch. Gen. Psychiatry, 63:366–373, 2006.
[80] J.D.Bremner et. al., “Regional brain metabolic correlates of alpha-methylparatyrosine induced depressive symptoms: implications for the neural circuitry of depression” JAMA 289, 3125–3134, 2003.
[81] H. D. Morgan et. al., “Epigenetic reprogramming in mammals”, Human Molecular Genetics, Vol. 14, Review Issue 1 R47–R58, 2005.
[82] T. Tada, et al., “Epigenotype switching of imprintable loci in embryonic germ cells.” Dev. Genes Evol. 207, 551–561, 1998. |