博碩士論文 952211017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.14.144.152
姓名 陳珮欣(PEI-HSING CHEN)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 以蛋白質體學研究嗜超高溫古生菌Aeropyrum pernix K1分泌蛋白體
(Proteomic analysis of the secretome of hyperthermophilic archaeon Aeropyrum pernix K1)
相關論文
★ Pseudomonas putida TX2中辛基苯酚聚氧乙基醇類脫氫酶之初步純化與特性研究★ 以電泳膠體分離及質譜儀鑑定紅斑性狼瘡(活躍期)血漿中表現差異的蛋白質
★ Acinetobacter sp. OP5 與 Pseudomonas sp. TX1 參與辛基酚分解之基因群與OP5菌株之烷基鄰苯二酚2, 3加氧酵素★ 陰離子界面活性劑sodium dodecylbenzene sulfonate分解菌篩選與脫磺酸酵素研究
★ 鄰苯二酚加氧酵素的熱穩定性提昇研究★ Triton X-100 分解菌之分離和分解酵素之特性研究
★ Triton X-100加氧酵素之純化與定性★ Lactobacillus reuteri於酸性與膽鹽環境中之蛋白質體研究
★ 蕃茄根部受銅逆境之基因調控★ Pseudomonas nitroreducens TX1 異化辛基苯酚聚氧乙基醇之功能性蛋白質體學:以二維電泳法分析等電點4-8之蛋白質表現
★ Pseudomonas nitroreducens TX1之具耗氧活性之麩胺酸合成酶之單離★ 人類細胞株生產含多種亞型的 干擾素-a之蛋白質體學研究
★ 辛基苯酚之分解:分解菌和生物復育之菌相研究★ 分解辛基苯酚聚氧乙基醇之耗氧酵素(二氫硫辛醯胺脫氫酶)的純化與定性
★ AtNPR1轉殖番茄之性狀分析及抗病機制研究★ Pseudomonas putida TX2分解辛基苯酚聚氧乙基醇及其具雌激素活性代謝物之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究選用嗜高溫古生菌Aeropyrum pernix K1,鑑定高溫環境中具有熱穩定性之外泌蛋白質並探討其功能。此微生物為1993年於日本西南方Kodakara-Jima島沿岸的硫磺噴口處篩選而得,是一株絕對好氧並嗜生長在超高溫環境的古生菌,其最適生長條件為絕對好氧、90~95oC、pH 7.0、鹽度3.5%;目前已知其他與A. pernix K1同科(Desulfurococcaceae)之古生菌皆為絕對厭氧,並以醱酵或無氧呼吸獲得能量,因之,A. pernix K1的能量運用、生理代謝及其酵素特性與應用潛力,因其獨特性而具有研究價值。
日本研究團隊Yamazaki等人已於2006年發表A. pernix K1胞內蛋白體之研究,本研究則探討其分泌蛋白體。將A. pernix K1培養於最適生長溫度(90oC)之JXTm培養液,並於對數期收集菌液,去除菌體後,經充氮氣正壓式過濾濃縮後可得到分泌到細胞外蛋白質體(分泌體),經由三種蛋白質鑑定方法:(1)一維或(2)二維電泳分離蛋白質並經膠體內胰蛋白酶消化和(3)直接將分泌體消化水解,以電噴霧四極桿飛行時間質譜儀分析胺基酸序列,可鑑定出在高溫具穩定性之分泌性蛋白質。
本研究共鑑定到在對數期生長時分泌體中的136個熱穩定蛋白質,依生物資訊方法進行次細胞位置分類與預測,確認17個為分泌性蛋白質:如耐90oC之水解酵素subtilisin-like protease (pernisine) (APE0263.1)、surface layer-associated protease precursor (APE1213.1)和putative homocysteine methyltransferase (APE2050.1),及多種能夠與amino acid (APE0917, APE2521.1)、oligopeptide (APE2257, APE1583.1, APE0945.1)、phosphate (APE0045)或其他基質(APE1630.1, APE1893.1, APE2254.1, APE1390.1)結合的binding proteins。這些分泌蛋白質中,水解酵素扮演分解、利用胞外(培養基)的營養物質的角色,而binding proteins扮演結合和運輸的重要功能,將營養物質送至細胞內,在細胞生長、代謝的過程具有重要的生理意義。
本研究鑑定到的136個蛋白質中,有131個屬於A. pernix K1,5個屬於其他古生菌:Caldivirga maquilingensis IC-167之膜蛋白質alpha-glucosidase (Cmaq1692)與胞內蛋白質hypothetical protein Cmaq0545 (Cmaq0545)、Methanococcus maripaludis C7之DNA-directed RNA polymerase (MmarC7_0607)、Methanococcus maripaludis S2之intermediate filament protein (MMP0676)、Aciduliprofundum boonei T469之NAD+ synthetase (ABOONEI1219),上述物種中僅C. maquilingensis IC-167與A. pernix K1親源關係較接近。此5個蛋白質被鑑定屬於他種古生菌,其中2個基因(MmarC7_0607和MMP0676),其起始密碼分別為TTG和TTA,皆轉譯為Leucine而非傳統的Methionine;而另外3個基因雖以ATG為起始密碼,但在先前四篇A. pernix K1以生物資訊方法的gene annotation文獻中,並不認定其為ORFs,原因尚有待分析,但本研究顯示,濕式研究能直接探索到特定條件下表達的基因產物,可補足乾式實驗的不足。因為在136個蛋白質中有5個為之前未發現的基因產物,推測在A. pernix K1基因體中應還有為數尚多的基因及其產物待進一步探索。
在次細胞位置的預測方面,我們分析本研究所鑑定之蛋白質,與前人所發表之A. pernix K1胞內蛋白質,評估四種次細胞預測工具(CELLO、PSORTb、Proteome Analyst和PRED-SIGNAL)之準確性與效能,其中,以古生菌蛋白質為training data的PRED-SIGNAL具有較佳的效能(Precision 95.9%, Recall 0.78),其次為以細菌蛋白質為training data的CELLO (Precision 94.4%, Recall 0.78);若針對胞外蛋白質而言,則僅PRED-SIGNAL之效能較好。未來期望能以更多的胞外蛋白質實驗數據,再對此四種預測工具做更客觀的評比,提出修正胞外蛋白質之預測工具。
摘要(英) In this study, Aeropyrum pernix K1 is chose to study its thermostable secretomes. Aeropyrum pernix K1 was found in the coastal solfataric thermal vent of Kodakara-Jima Island, south west of Japan in 1993. This archaeon is aerobic, living in a hyperthermophilic condition. It grows in the range of 90~95 oC, pH 7.0, and salinity level at 3.5%. Unlike A. pernix K1, other archaea are anaerobic, and uses fermentation and anaerobic respiration for energy; thus, the energy utilization, physiological metabolism, and enzyme characteristics of A. pernix K1 has a great value in microbiology research.
Yamazaki et al. published the research achievements about the cytosolic proteome from A. pernix K1in 2006. In our study, we investigate the thermostable proteins secreted by A. pernix K1. It is grown at 90 oC in JXTm medium. The archaeon is harvested at log phase, after removing of the cell, the remaining the supernatant is filtered using ultrafiltration, thus secretome is obtained. Three proteomic methods are performed: (1) 1D SDS-PAGE, or (2) 2D SDS-PAGE followed by in-gel digestion, and (3) in-solution digestion. Finally, ESI Q-TOF MS/MS is used to analyze the amino acid sequence and its high-throughput is able to identify thermostable hyperthermophilic proteins.
According to Pfam functional search and subcellular localization prediction, we identified a total of 136 thermostable proteins that harvested at log phase and confirmed 17 of secreted proteins are found to be subtilisin-like protease (pernisine) (APE0263.1) that can endure 90oC, surface layer-associated protease precursor (APE1213.1), putative homocysteine methyltransferase (APE2050.1) and binding proteins that can bind amino acid (APE0917, APE2521.1), oligopeptide (APE2257, APE1583.1, APE0945.1), phosphate (APE0045) or other substrates (APE1630.1, APE1893.1, APE2254.1, APE1390.1). Among these secreted proteins, hydrolase is able to hydrolyze and utilize the medium for nutrients, and the binding proteins play an important role in binding and transport, sending nutrients to the cytosol and physiological functions such as cell growth and metabolic processes.
In our research, 136 were identified as thermostable proteins with 131 of them belongs to A. pernix K1 and five belongs to other archaea, such as the membrane protein alpha-glucosidase (Cmaq1692) and cytosolic protein hypothetical protein Cmaq0545 of Caldivirga maquilingensis IC-167, the DNA-directed RNA polymerase (MmarC7_0607) of Methanococcus maripaludis C7, the intermediate filament protein (MMP0676) of Methanococcus maripaludis S2 and NAD+ synthetase (ABOONEI1219) of Aciduliprofundum boonei T469. From the above mentioned organisms, C. maquilingensis IC-167 is closest related to A. pernix K1. There are five proteins belong to other arachaea. Among the 2 genes (MmarC7_0607 and MMP0676), the start codons are TTG and TTA, respectively. Their translated proteins are Leucine instead of the traditional Methionine; although the other 3 genes start with ATG, but the previous A. pernix K1 literatures using bioinformatics as a tool were shown that the gene annotation was not the ORFs. The questions are still waiting to be answered, but it has shown that the wet lab can directly explore the expression of genes under certain conditions, thus fulfills the insufficiency of the dry lab. Since 5 of the 136 genes were not found in the gene product, suggesting that there are a few more genes and products that needed to be explored further.
In predicting the subcellular localization, we compared the identified proteins coupled with the published literature, we exam the precision and efficiency of the four cellular prediction tools (CELLO, PSORTb, Proteome Analyst and PRED-SIGNAL) and found that using arachaea as a training data, PRED-SIGNAL has the highest efficiency (Precision 95.9%, Recall 0.78), follow by using bacteria proteins as a training data in CELLO (Precision 94.4%, Recall 0.78); however, when testing only the extracellular proteins, only PRED-SIGNAL can give a better result. Hopefully we will be able to obtain more extracellular proteins in the lab, then compare the four prediction tools in order to correct any misperceptions about extracellular proteins.
關鍵字(中) ★ 嗜超高溫
★ 次細胞位置
★ 蛋白質體學
★ 分泌體
關鍵字(英) ★ subcellular location
★ secretome
★ proteomics
★ hyperthermophilic
論文目次 摘要……………………………………………………………………….I
Abstract…………………………………………………………………IV
目錄…………………………………………………………………….VII
表目錄……………………………………………………………......…XI
圖目錄………………………………………………………….…….XIII
名詞縮寫對照表………………………………………………..…….XIV
一、緒論
1-1 嗜熱微生物與熱穩定蛋白質…………………………………...1
1-1-1 嗜熱微生物………………………………………...………1
1-1-2 蛋白質熱穩定性…………………………………………...2
1-1-3 熱穩定酵素之應用………………………………………...3
1-2 古生菌……………………………………………….…………..4
1-2-1 古生菌之分類學…………………………………………...4
1-2-2 古生菌生化特性…………………………………………...5
1-3 Aeropyrum pernix K1……………………………….……………6
1-3-1 A. pernix K1 的生理與生態…………………...……………6
1-3-2 A. pernix K1 基因體………………………………………...7
1-3-3 A. pernix K1 胞內蛋白質…………………………………...9
1-3-4 A. pernix K1 胞外蛋白質………………………………….10
1-4 蛋白質分泌系統與次細胞位置…………………………….…11
1-4-1 古生菌分泌性蛋白質特性……………………………….11
1-4-2 蛋白質次細胞位置……………………………………….13
1-5 研究目的……………………………………………………….14
二、材料及方法
2-1 培養基與菌株…………………………………………...……..16
2-1-1 培養基…………………………………………………….16
2-1-2 菌株……………………………………………………….16
2-1-3 生長……………………………………………….………16
2-2 蛋白質樣品製備……………………………………….………16
2-2-1 胞內蛋白質粗萃液………………….……………………16
2-2-2 分泌體………………………………………………….....17
2-2-3 分泌體濃縮……………………………………………….17
2-2-4 蛋白質沉澱……………………………………………….17
2-3 蛋白質一維電泳………………………………………………18
2-3-1 樣品種類…………………………………………….……18
2-3-2 樣品定量…………………….……………………………19
2-3-3 硫酸十二酯鈉聚丙烯醯胺凝膠一維電泳……………….19
2-4 蛋白質二維電泳………………………………………………21
2-4-1 樣品種類…………………………………………………21
2-4-2 樣品定量…………………………………………………21
2-4-3 等電點焦集第一維電泳…………………………………22
2-4-4 硫酸十二酯鈉聚丙烯醯胺凝膠二維電泳………………22
2-5 蛋白質偵測方法………………………………………………23
2-5-1 孔雀藍染色法…………………………………………….23
2-5-2 硝酸銀染色法…………………………………………….24
2-6 軟體分析電泳膠體…………………………………….………24
2-7 膠體內蛋白質消化…………………………………………….24
2-7-1 清洗………………………………………………….……24
2-7-2 膠體脫色……………………………………………….…25
2-7-3 膠體內蛋白質還原與烷化作用…………………………25
2-7-4 膠體消化與胜肽萃取……………………………………26
2-8 溶液內蛋白質消化……………………………………………26
2-9 蛋白質鑑定……………………………………………………26
2-10 次細胞位置預測…………………………………………...…27
2-11 實驗儀器與藥品……………………………………………...29
2-11-1 實驗儀器…………………………………………………29
2-11-2 實驗藥品…………………………………………………31
三、結果
3-1 A. pernix K1 生長……………………………………………….33
3-2 蛋白質樣品製備……………………………………………….33
3-3 A. pernix K1 膠體一維電泳分析與蛋白質鑑定……………….33
3-3-1 對數期與停滯期分泌體………………………………….33
3-3-2 短式一維電泳…………………………………………….34
3-3-3 胞內蛋白體、對數期與停滯期分泌體蛋白質分佈…….34
3-4 A. pernix K1 膠體二維電泳分析與蛋白質鑑定………………35
3-4-1 胞外蛋白體樣品處理與第ㄧ維等電點焦集作用……….35
3-4-2 第二維蛋白質電泳膠體分析…………………………….35
3-4-3 蛋白質鑑定……………………………………………….36
3-5 溶液內蛋白質消化…………………………………………….36
3-6 次細胞位置預測結果………………………………………….36
3-6-1 A. pernix K1 ORFs 預測………………………………...…36
3-6-2 次細胞位置預測工具之效能…………………………….37
四、討論
4-1 A. pernix K1 之培養…………….………………………………39
4-2 A. pernix K1 胞外蛋白質製備………………………….………39
4-3 A. pernix K1 蛋白質鑑定……………………………………….40
4-4 A. pernix K1 蛋白質次細胞位置…………………………….…42
五、結論與建議……………………………………………………….45
六、參考文獻………………………………………………………….47
表……………………………………………………………………….54
圖………………………………………………………………………125
參考文獻 黃彰彥 (2007) 以蛋白質體學篩選嗜高溫細菌Geobacillus kastophilus之抗熱蛋白質。國立中央大學生命科學研究所碩士論文。
Albers, S., JL., v.d.V., AJ., D. & WN., K. (2000) Adaptations of the archaeal cell membrane to heat stress. Front. Biosci. 5, 813-20.
Albers, S.V. & Driessen, A.M. (2002) Signal peptides of secreted proteins of the archaeon Sulfolobus solfataricus: a genomic survey. Arch Microbiol 177(3), 209-16.
Bagos, P.G., Tsirigos, K.D., Plessas, S.K., Liakopoulos, T.D. & Hamodrakas, S.J. (2008) Prediction of signal peptides in archaea. Protein Eng Des Sel.
Barns, S.M., Delwiche, C.F., Palmer, J.D. & Pace, N.R. (1996) Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. Proc Natl Acad Sci U S A 93(17), 9188-93.
Baross, J.A. (1995) Isolation, growth, and maintenance of hyperthermophiles, p. 15–23. In F. T. Robb and A. R. Place (ed.), Archaea, a laboratory manual, thermophiles. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
Baumeister, W. & Lembcke, G. (1992) Structural features of archaebacterial cell envelopes. J Bioenerg Biomembr 24(6), 567-75.
Bhuiya, M.W., Tsuge, H., Sakuraba, H., Yoneda, K., Katunuma, N. & Ohshima, T. (2002) Crystallization and preliminary X-ray diffraction analysis of glutamate dehydrogenase from an aerobic hyperthermophilic archaeon, Aeropyrum pernix K1. Acta Crystallogr D Biol Crystallogr 58(Pt 8), 1338-9.
Blattner, F.R., Plunkett, G., 3rd, Bloch, C.A., Perna, N.T., Burland, V., Riley, M., Collado-Vides, J., Glasner, J.D., Rode, C.K., Mayhew, G.F., Gregor, J., Davis, N.W., Kirkpatrick, H.A., Goeden, M.A., Rose, D.J., Mau, B. & Shao, Y. (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331), 1453-74.
Blumer-Schuette, S.E., Kataeva, I., Westpheling, J., Adams, M.W. & Kelly, R.M. (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol.
Bolhuis, A. (2002) Protein transport in the halophilic archaeon Halobacterium sp. NRC-1: a major role for the twin-arginine translocation pathway? Microbiology 148(Pt 11), 3335-46.
Bolhuis, A. (2004) The archaeal Sec-dependent protein translocation pathway. Philos Trans R Soc Lond B Biol Sci 359(1446), 919-27.
Burg, B.v.d. (2003) Extremophiles as a source for novel enzymes. Current Opinion in Microbiology 6, 213-218.
Catara, G., Ruggiero, G., La Cara, F., Digilio, F.A., Capasso, A. & Rossi, M. (2003) A novel extracellular subtilisin-like protease from the hyperthermophile Aeropyrum pernix K1: biochemical properties, cloning, and expression. Extremophiles 7(5), 391-9.
D'Ambrosio, K., De Simone, G., Pedone, E., Rossi, M., Bartolucci, S. & Pedone, C. (2005) Crystallization and preliminary X-ray diffraction studies of a protein disulfide oxidoreductase from Aeropyrum pernix K1. Acta Crystallogr Sect F Struct Biol Cryst Commun 61(Pt 3), 335-6.
D'Ambrosio, K., Pedone, E., Langella, E., De Simone, G., Rossi, M., Pedone, C. & Bartolucci, S. (2006) A novel member of the protein disulfide oxidoreductase family from Aeropyrum pernix K1: structure, function and electrostatics. J Mol Biol 362(4), 743-52.
De Rosa, M., Gambacorta, A. & Gliozzi, A. (1986) Structure, biosynthesis, and physicochemical properties of archaebacterial lipids. Microbiol. Rev. 50 (1), 70-80.
Elkins, J.G., Podar, M., Graham, D.E., Makarova, K.S., Wolf, Y., Randau, L., Hedlund, B.P., Brochier-Armanet, C., Kunin, V., Anderson, I., Lapidus, A., Goltsman, E., Barry, K., Koonin, E.V., Hugenholtz, P., Kyrpides, N., Wanner, G., Richardson, P., Keller, M. & Stetter, K.O. (2008) A korarchaeal genome reveals insights into the evolution of the Archaea. Proc Natl Acad Sci U S A 105(23), 8102-7.
Faguy, D.M. & Doolittle, W.F. (1999) Lessons from the Aeropyrum pernix genome. Curr Biol 9(23), R883-6.
Gao, B. & Gupta, R.S. (2007) Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis. BMC Genomics 8, 86.
Gardy, J.L. & Brinkman, F.S. (2006) Methods for predicting bacterial protein subcellular localization. Nat Rev Microbiol 4(10), 741-51.
Gardy, J.L., Laird, M.R., Chen, F., Rey, S., Walsh, C.J., Ester, M. & Brinkman, F.S. (2005) PSORTb v.2.0: expanded prediction of bacterial protein subcellular localization and insights gained from comparative proteome analysis. Bioinformatics 21(5), 617-23.
Gardy, J.L., Spencer, C., Wang, K., Ester, M., Tusnady, G.E., Simon, I., Hua, S., deFays, K., Lambert, C., Nakai, K. & Brinkman, F.S. (2003) PSORT-B: Improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res 31(13), 3613-7.
George M. Garrity, a. (2001) “Bergey’s Manual of Systematic Bacteriology”, Vol. 1 (2nd ed.). Springer-Verlag., 5.
Griffiths, E., Ventresca, M.S. & Gupta, R.S. (2006) BLAST screening of chlamydial genomes to identify signature proteins that are unique for the Chlamydiales, Chlamydiaceae, Chlamydophila and Chlamydia groups of species. BMC Genomics 7, 14.
Guo, F.B., Wang, J. & Zhang, C.T. (2004) Gene recognition based on nucleotide distribution of ORFs in a hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 11(6), 361-70.
Gupta, R.S. (2006) Molecular signatures (unique proteins and conserved indels) that are specific for the epsilon proteobacteria (Campylobacterales). BMC Genomics 7, 167.
Helianti, I., Morita, Y., Yamamura, A., Murakami, Y., Yokoyama, K. & Tamiya, E. (2001) Characterization of native glutamate dehydrogenase from an aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Appl Microbiol Biotechnol 56(3-4), 388-94.
Hickey, D.A. & Singer, G.A. (2004) Genomic and proteomic adaptations to growth at high temperature. Genome Biol 5(10), 117.
Howland, J.L. (2000) The Surprising Archaea: Discovering Another Domain of Life. Oxford: Oxford University Press pp. 32.
Huber, H., Hohn, M.J., Rachel, R., Fuchs, T., Wimmer, V.C. & Stetter, K.O. (2002) A new phylum of Archaea represented by a nanosized hyperthermophilic symbiont. Nature 417(6884), 63-7.
Jerry, E. (2003) Facing extremes: archaeal surface-layer (glyco)proteins. Microbiology 149, 3347-51.
Kamm, B. & Kamm, M. (2007) Biorefineries--multi product processes. Adv Biochem Eng Biotechnol 105, 175-204.
Karlin, S. (1998) Global dinucleotide signatures and analysis of genomic heterogeneity. Curr Opin Microbiol 1(5), 598-610.
Kashefi, K. & Lovley, D.R. (2003) Extending the upper temperature limit for life. Science 301(5635), 934.
Kawarabayasi, Y., Hino, Y., Horikawa, H., Yamazaki, S., Haikawa, Y., Jin-no, K., Takahashi, M., Sekine, M., Baba, S., Ankai, A., Kosugi, H., Hosoyama, A., Fukui, S., Nagai, Y., Nishijima, K., Nakazawa, H., Takamiya, M., Masuda, S., Funahashi, T., Tanaka, T., Kudoh, Y., Yamazaki, J., Kushida, N., Oguchi, A., Kikuchi, H. & et al. (1999) Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res 6(2), 83-101, 145-52.
Kiss, A.L., Hornung, B., Radi, K., Gengeliczki, Z., Sztaray, B., Juhasz, T., Szeltner, Z., Harmat, V. & Polgar, L. (2007) The acylaminoacyl peptidase from Aeropyrum pernix K1 thought to be an exopeptidase displays endopeptidase activity. J Mol Biol 368(2), 509-20.
Lynd, L.R., Laser, M.S., Bransby, D., Dale, B.E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J.D., Sheehan, J. & Wyman, C.E. (2008) How biotech can transform biofuels. Nat Biotechnol 26(2), 169-72.
Madigan, M.T., Martinko,J.M. and Parker,J. (2003) Brock Biology of Microorganisms, 10th edn. Pearson Education, Inc., NJ, USA, pp. 151-156.
Makarova, K.S. & Koonin, E.V. (2005) Evolutionary and functional genomics of the Archaea. Curr Opin Microbiol 8(5), 586-94.
Mizohata, E., Sakai, H., Fusatomi, E., Terada, T., Murayama, K., Shirouzu, M. & Yokoyama, S. (2005) Crystal structure of an archaeal peroxiredoxin from the aerobic hyperthermophilic crenarchaeon Aeropyrum pernix K1. J Mol Biol 354(2), 317-29.
Nakagawa, S., Takai, K., Horikoshi, K. & Sako, Y. (2004) Aeropyrum camini sp. nov., a strictly aerobic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 54(Pt 2), 329-35.
Nakamura, T., Matsumura, H., Inoue, T., Kai, Y., Uegaki, K., Hagihara, Y., Ataka, M. & Ishikawa, K. (2005) Crystallization and preliminary X-ray diffraction analysis of thioredoxin peroxidase from the aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Acta Crystallogr Sect F Struct Biol Cryst Commun 61(Pt 3), 323-5.
Nakamura, T., Yamamoto, T., Abe, M., Matsumura, H., Hagihara, Y., Goto, T., Yamaguchi, T. & Inoue, T. (2008) Oxidation of archaeal peroxiredoxin involves a hypervalent sulfur intermediate. Proc Natl Acad Sci U S A 105(17), 6238-42.
Nakamura, T., Yamamoto, T., Inoue, T., Matsumura, H., Kobayashi, A., Hagihara, Y., Uegaki, K., Ataka, M., Kai, Y. & Ishikawa, K. (2006) Crystal structure of thioredoxin peroxidase from aerobic hyperthermophilic archaeon Aeropyrum pernix K1. Proteins 62(3), 822-6.
Natale, D.A., Shankavaram, U.T., Galperin, M.Y., Wolf, Y.I., Aravind, L. & Koonin, E.V. (2000) Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs). Genome Biol 1(5), RESEARCH0009.
Nielsen, H., Brunak, S. & von Heijne, G. (1999) Machine learning approaches for the prediction of signal peptides and other protein sorting signals. Protein Eng 12(1), 3-9.
Nomura, N., Morinaga, Y., Kogishi, T., Kim, E.J., Sako, Y. & Uchida, A. (2002) Heterogeneous yet similar introns reside in identical positions of the rRNA genes in natural isolates of the archaeon Aeropyrum pernix. Gene 295(1), 43-50.
Palmieri, G., Casbarra, A., Fiume, I., Catara, G., Capasso, A., Marino, G., Onesti, S. & Rossi, M. (2006) Identification of the first archaeal oligopeptide-binding protein from the hyperthermophile Aeropyrum pernix. Extremophiles 10(5), 393-402.
Pruitt, K.D., Tatusova, T. & Maglott, D.R. (2003) NCBI Reference Sequence project: update and current status. Nucleic Acids Res 31(1), 34-7.
Ring, G. & Eichler, J. (2004) Extreme secretion: protein translocation across the archael plasma membrane. J Bioenerg Biomembr 36(1), 35-45.
Robb, F.T. & Clark, D.S. (1999) Adaptation of proteins from hyperthermophiles to high pressure and high temperature. J Mol Microbiol Biotechnol 1(1), 101-5.
Rose, R.W., Bruser, T., Kissinger, J.C. & Pohlschroder, M. (2002) Adaptation of protein secretion to extremely high-salt conditions by extensive use of the twin-arginine translocation pathway. Mol Microbiol 45(4), 943-50.
Rozzell, J.D. (1999) Commercial scale biocatalysis: myths and realities. Bioorg Med Chem 7(10), 2253-61.
Russell, R.J. & Taylor, G.L. (1995) Engineering thermostability: lessons from thermophilic proteins. Curr Opin Biotechnol 6(4), 370-4.
Sára, M. & Sleytr, U. (2000) S-Layer proteins. J. Bacteriol. 182, 859-68.
Saier, M.H., Jr. (2006) Protein secretion and membrane insertion systems in gram-negative bacteria. J Membr Biol 214(2), 75-90.
Sako, Y., Croocker, P.C. & Ishida, Y. (1997) An extremely heat-stable extracellular proteinase (aeropyrolysin) from the hyperthermophilic archaeon Aeropyrum pernix K1. FEBS Lett 415(3), 329-34.
Sako, Y., Nomura, N., Uchida, A., Ishida, Y., Morii, H., Koga, Y., Hoaki, T. & Maruyama, T. (1996) Aeropyrum pernix gen. nov., sp. nov., a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 degrees C. Int J Syst Bacteriol 46(4), 1070-7.
Santos, H. & da Costa, M.S. (2002) Compatible solutes of organisms that live in hot saline environments. Environ Microbiol 4(9), 501-9.
Spassov, V.Z., Karshikoff, A.D. & Ladenstein, R. (1995) The optimization of protein-solvent interactions: thermostability and the role of hydrophobic and electrostatic interactions. Protein Sci 4(8), 1516-27.
Stetter, K.O. (1986) Thermophiles: General, Molecular and Applied Microbiology (Brock, T.D., Ed.). , pp. 39-74. John Wiley and Sons, New York.
Stetter, K.O. (1999) Extremophiles and their adaptation to hot environments. FEBS Lett 452(1-2), 22-5.
Stetter, K.O., Huber R., Blöchl E., Kurr M., Eden R. D., Fielder M., Cash H. & Vance I. (1993) Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743-745.
Szafron, D., Lu, P., Greiner, R., Wishart, D.S., Poulin, B., Eisner, R., Lu, Z., Anvik, J., Macdonell, C., Fyshe, A. & Meeuwis, D. (2004) Proteome Analyst: custom predictions with explanations in a web-based tool for high-throughput proteome annotations. Nucleic Acids Res 32(Web Server issue), W365-71.
Tjalsma, H., Antelmann, H., Jongbloed, J.D., Braun, P.G., Darmon, E., Dorenbos, R., Dubois, J.Y., Westers, H., Zanen, G., Quax, W.J., Kuipers, O.P., Bron, S., Hecker, M. & van Dijl, J.M. (2004) Proteomics of protein secretion by Bacillus subtilis: separating the "secrets" of the secretome. Microbiol Mol Biol Rev 68(2), 207-33.
Trivedi, S., Gehlot, H.S. & Rao, S.R. (2006) Protein thermostability in Archaea and Eubacteria. Genet Mol Res 5(4), 816-27.
Turner, P., Mamo, G. & Karlsson, E.N. (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6, 9.
Vieille, C., Burdette, D.S. & Zeikus, J.G. (1996) Thermozymes. Biotechnol Annu Rev 2, 1-83.
Vieille, C., Epting, K.L., Kelly, R.M. & Zeikus, J.G. (2001) Bivalent cations and amino-acid composition contribute to the thermostability of Bacillus licheniformis xylose isomerase. Eur J Biochem 268(23), 6291-301.
Vieille, C. & Zeikus, G.J. (2001) Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65(1), 1-43.
von Heijne, G. (1990a) Protein targeting signals. Curr Opin Cell Biol 2(4), 604-8.
von Heijne, G. (1990b) The signal peptide. J Membr Biol 115(3), 195-201.
Wang, G., Gao, R., Ding, Y., Yang, H., Cao, S., Feng, Y. & Rao, Z. (2002) Crystallization and preliminary crystallographic analysis of acylamino-acid releasing enzyme from the hyperthermophilic archaeon Aeropyrum pernix. Acta Crystallogr D Biol Crystallogr 58(Pt 6 Pt 2), 1054-5.
Wang, M., Yafremava, L.S., Caetano-Anolles, D., Mittenthal, J.E. & Caetano-Anolles, G. (2007) Reductive evolution of architectural repertoires in proteomes and the birth of the tripartite world. Genome Res 17(11), 1572-85.
Wang, Q., Yang, G., Liu, Y. & Feng, Y. (2006) Discrimination of esterase and peptidase activities of acylaminoacyl peptidase from hyperthermophilic Aeropyrum pernix K1 by a single mutation. J Biol Chem 281(27), 18618-25.
Watanabe, Y., Yokobori, S., Inaba, T., Yamagishi, A., Oshima, T., Kawarabayasi, Y., Kikuchi, H. & Kita, K. (2002) Introns in protein-coding genes in Archaea. FEBS Lett 510(1-2), 27-30.
Woese, C.R., Kandler, O. & Wheelis, M.L. (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87(12), 4576-9.
Yamamura, A., Ichimura, T., Mimoto, F., Ohtsuka, J., Miyazono, K.I., Okai, M., Kamo, M., Lee, W.C., Nagata, K. & Tanokura, M. (2008) A unique catalytic triad revealed by the crystal structure of APE0912, a short-chain dehydrogenase/reductase family protein from Aeropyrum pernix K1. Proteins 70(4), 1640-1645.
Yamazaki, S., Yamazaki, J., Nishijima, K., Otsuka, R., Mise, M., Ishikawa, H., Sasaki, K., Tago, S. & Isono, K. (2006) Proteome analysis of an aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1. Mol Cell Proteomics 5(5), 811-23.
Yu, C.S., Lin, C.J. & Hwang, J.K. (2004) Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 13(5), 1402-6.
Zhang, H.F., Zheng, B.S., Peng, Y., Lou, Z.Y., Feng, Y. & Rao, Z.H. (2005) Expression, purification and crystal structure of a truncated acylpeptide hydrolase from Aeropyrum pernix K1. Acta Biochim Biophys Sin (Shanghai) 37(9), 613-7.
指導教授 黃雪莉(Shir-Ly Huang) 審核日期 2009-2-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明