博碩士論文 962211007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:13.58.245.158
姓名 謝佩君(Pei-Chun Hsieh)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 運用時間序列微陣列資料來預測調控基因
(Predicting Regulating Genes using Time-course Microarray Data)
相關論文
★ 人類陰道滴蟲之Myb2蛋白質動態性質研究★ 分析原核生物基因體複製起點與終點的反向對偶對稱現象
★ 發展酵素非限制性全基因體調控因子解析方法★ 大腸癌細胞株之 EGFR—K-ras 訊號路徑的基因微陣列實驗 與化學基因體學分析
★ 分析基因體拷貝數變異所使用的兩種方法比較:隱藏馬可夫模型與成對高斯合併法★ 小鼠胚胎幹細胞株之建立及人類誘導多能性幹細胞之培養技術
★ 由神經生長因子誘導之細胞內訊號路徑活化的化學基因體學分析★ 使用兩種方法偵測基因體拷貝數變異:成對高斯合併法與隱藏馬可夫模型
★ 以整體晶片數據為母體應用於分析基因差異表達的z檢定方法★ GSLHC - 運用基因組及層次類聚以生物功能群將有生物活性的複合物定性的方法
★ 一個檢定測量微晶片基因表達數據靈敏度的全統計計算法★ 細胞週期蛋白D1 mRNA在小鼠胚胎及成體幹細胞和腫瘤細胞中的表現及其受多能性相關因子影響之探討
★ 運用嶄新抗體固著策略發展及驗證新式抗體微晶片平台★ Drug-resistant colon cancer cells produce high carcinoembryonic antigen and might not be cancer-initiating cells
★ 創傷性關節炎軟骨之退化進程- 大鼠模型基因體圖譜研究★ 基因體功能統合分析在阿茲海默症和大腦老化-近年阿茲海默症研發藥物失敗的理論問題探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們用兩組酵母菌和兩組細菌的微陣列數據來驗證以及比較三個用來研究基因調控的動力模型―一階、二階和平均。對於每一個受關注的被調控基因,我們以最高事後機率找出最有可能的調控基因,接著利用EchoBASE、GeneDB以及Saccharomyces Genome Database等資料庫來查對那些最高事後機率的基因,並認定其中哪些被註釋為轉錄因子。我們將最大化機率的基因分成兩組-編碼轉錄因子與編碼非轉錄因子,再以它們的ROC線下面積(AUC)來量化模型的表現。我們發現二階模型在驗證中的整體表現最佳,其中一個AUC高達100%。因此在本研究中,我們認為二階微分模型預測轉錄因子的能力會優於其他兩種動力模型。
摘要(英) On two yeast datasets and two bacteria datasets, we validate and compare three kinetic models – first-order, second-order and averaged – for studying causal relationships between genes. For each regulated gene of interest, we identify the gene with the highest posterior probability of being its dominant regulating gene. We then check the annotation of those genes with the highest posterior probability(probability-maximizing genes)in EchoBASE, GeneDB, and in the Saccharomyces Genome Database and note which among them are putative transcription factors. To quantify performance, we estimate the area under the receiver operating characteristic curve (AUC) between the probability-maximizing genes that encode putative transcription factors and those that do not. We find the second-order model performs well in validation. One of its AUC estimates is 100%, reflecting the case in which the only putative transcription factor has a higher posterior probability of being the dominant regulator of a gene of interest than any of the other 42 genes. Based on this study we suggest that the second-order model is better than others kinetic models on predicting transcription factors.
關鍵字(中) ★ 時間序列微陣列
★ 調控基因
關鍵字(英) ★ regulating gene
★ time-course microarray
論文目次 第一章、簡介 1
1-1 微陣列晶片 1
1-1-1 背景 1
1-1-2 實驗流程 1
1-1-3 微陣列的分析 4
1-2 基因調控關聯性網路的重建 6
1-2-1 貝氏網路 6
1-2-2 線性的轉錄模型 7
第二章、資料內容與資料處理 9
2-1 酵母菌與大腸桿菌的時間序列微陣列資料 9
2-2 本研究有興趣的標靶基因 11
2-2-1 酵母菌的標靶基因 11
2-2-2 大腸桿菌標靶基因之選取 13
2-3 遺漏值的成因 14
2-4 遺漏值的處理方法 15
第三章、基因網路模型 18
3-1 轉錄的調控網路模型 18
3-2 一階微分方程式模型 21
3-3 二階微分方程式模型 24
3-4 平均模型 26
第四章、分析結果 27
4-1 標靶基因之預測結果 27
4-1-1 酵母菌標靶基因之預測結果 27
4-1-2 大腸桿菌標靶基因之預測結果 30
4-2 各模型的分析結果 32
4-3 三個模型的分析優劣之比較 36
第五章、討論 39
參考文獻 43
附錄 46
附錄一 本研究挑選出的酵母菌被調控基因(S. cerevisiae regulated genes) 46
附錄二 本研究挑選出的大腸桿菌被調控基因(E. coli regulated genes) 47
參考文獻 1. Schena, M., Shalon, D., Davis, R. W., and Brown, P. O. (1995), “Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray” Science 270, 467-470.
2. 葉昌偉, 謝昌煥, (2005), “基因晶片簡介與分析及應用軟體介紹(上),” 國家高速網路與計算中心¬¬―生物計算軟體與資料庫介紹.
3. Brown, P. O., and Botstein, D. (1999), “Exploring the new world of the genome with DNA microarrays,” Nature Genetics 21, 33-37.
4. Hegde, P., Qi, R., Abernathy, K., Gay, C., Dharap, S., Gaspard, R., Earle-Hughes, J., Snesrud, E., Lee, N., and Quackenbush, J. (2000), “A Concise Guide to cDNA Microarray Analysis – II,” Biotechniques 29, 548-562.
5. Workman, C., Jensen, L.J., Jarmer, H., Berka, R., Gautier, L., Nielser, H.B., Saxild, H.H., Nielsen, C., Brunak, S., and Knudsen, S. (2002), “A new non-linear normalization method for reducing variability in DNA microarray experiments,” Genome Biology 3, research0048.
6. Husmeier,D. (2003), “Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks,” Bioinformatics 19, 2271–2282.
7. Kim,S.Y., Imoto, S., Miyano, S. (2003), “Inferring gene networks from time series microarray data using dynamic Bayesian networks,” Brief. Bioinformatics 4, 228–235.
8. Tienda-Luna, I. M., Perez, M. C. C., Padillo, D. P. R., Yin, Y., Huang, Y. (2009), “Sensitivity and Specificity of Inferring Genetic Regulatory Interactions with the VBEM Algorithm,” IADIS International Journal on Computer Science and Information Systems 4, 54-63.
9. Jensen, F.V. (2001), “Bayesian Networks and Decision Graphs,” Springer-Verlag, New York.
10. Chen, T., He, H. L., and Church, G. M. (1999), “Modeling gene expression with differential equations,” Proc. Pacific Symposium of Biocomputing 4, 29-40.
11. Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., and Futcher, B. (1998), “Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization,” Molecular Biology of the Cell 9, 3273-3297.
12. de Lichtenberg, U., Jensen, L.J., Fausbøll, A., Jensen, T.S., Bork, P., and Brunak, S. (2005), “Comparison of computational methods for the identification of cell cycle-regulated genes,” Bioinformatics 21, 1164-1171.
13. Kao, K.C., Yang, Y.-L., Boscolo, R., Sabatti, C., Roychowdhury, V., Liao, J.C. (2004), “Transcriptome-based determination of multiple transcription regulator activities in Escherichia coli by using network component analysis,” Proceedings of the National Academy of Sciences of the United States of America 101, 641-646.
14. Bansal, M., Gatta, G.D., di Bernardo, D. (2006), “Inference of gene regulatory networks and compound mode of action from time course gene expression profiles.” Bioinformatics 22, 815-822.
15. Zhao, L. P., Prentice, R., and Breeden, L. (2001), “Statistical modeling of large microarray data sets to identify stimulus-response profiles,” Proc. Natl Acad. Sci. USA 98, 5631–5636.
16. Johansson, D., Lindgren, P., and Berglund, A. (2003), “A multivariate approach applied to microarray data for identification of genes with cell cycle-coupled transcription,” Bioinformatics 19, 467–473.
17. Bickel, D. R. (2005), “Probabilities of spurious connections in gene networks: Application to expression time series,” Bioinformatics 21, 1121-1128.
18. Quillardet, P., Rouffaud, M.-A., and Bouige, P. (2003), “DNA array analysis of gene expression in response to UV irradiation in Escherichia coli,” Research in Microbiology 154, 559-572.
19. Matic, I., Taddei, F., and Radman, M. (1996), “Genetic barriers among bacteria,” Trends Microbiol 4, 69-72.
20. Patten, C. L., Kirchhof, M. G., Schertzberg, M. R., Morton, R.A., and Schellhorn, H. E. (2004), “Microarray analysis of RpoS-mediated gene expression in Escherichia coli K-12,” Molecular Genetics and Genomics 272, 580-591.
21. Kannan, G., Wilks, J. C., Fitzgerald, D. M., Jones, B. D., BonDurant, S. S., and Slonczewski, J. L. (2008), “Rapid acid treatment of Escherichia coli: Transcriptomic response and recovery,” BMC Microbiology 8, no. 37.
22. Troyanskaya, O., Cantor, M., Sherlock, G., Brown, P., Hastie, T., Tibshirani, R., Botstein, D., and Altman, R. B. (2001), “Missing value estimation methods for DNA microarrays,” Bioinformatics 17, 520-525.
23. Little, R. J. A., Rubin, D. B. (2002), “Statistical Analysis with Missing Data,” 2nd edition, Wiley, New York.
24. Gardner, T. S., di Bernardo, D., Lorenz, D., Collins, J. J. (2003), “Inferring genetic networks and identifying compound mode of action via expression profiling,” Science 301, 102-105.
25. Frigessi, A., van de Wiel, M. A., Holden, M., Svendsrud, D. H., Glad, I. K., and Lyng, H. (2005), “Genome-wide estimation of transcript concentrations from spotted cDNA microarray data,” Nucleic acids research 33, 1-13.
26. Green, D.M., and Swets, J.A. (1966), “Signal Detection Theory and Psychophysics,” John Wiley and Sons, Inc., New York.
27. Bickel, D. R. (2004), “Degrees of differential gene expression: detecting biologically significant expression differences and estimating their magnitudes,” Bioinformatics 20, 682-688.

指導教授 李弘謙、凌慶東
(Hoong-Chien Lee、Qing-Dong Ling)
審核日期 2009-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明