以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:47 、訪客IP:18.224.32.70
姓名 梁晨璋(Chen-Zhang Liang) 查詢紙本館藏 畢業系所 電機工程學系在職專班 論文名稱 有限元素分析法於聽診器之聲波模擬
(Acoustic wave simulation in stethoscope using finite element analysis)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 聽診器(stethoscope),為醫生在進行臨床診斷時最重要的工具之一,其優點為以非侵入式的診斷,用作聽取人體內心、肺、胃腸等臟器發出的聲響,進而判斷人體的病症。聽診器自1816年由法國醫生R. Laennec發明以來,到現今經過了將近兩個世紀的演進,從過去早期的鐘式(bell)聽診器到結合麥克風感測元件的電子式聽診器。由於現代電腦科技的發達,近年來電子式聽診器已逐漸發展為電腦化的醫療輔具,透過電腦數位訊號分析的方式,可更快速的協助醫生進行診斷。
以訊號處理系統而言,電子式聽診器內傳遞聲波的部件可視為一聲波感測元件,其本身對於聲波帶有頻率響應特性,會影響量測端訊號的變化,且醫生在進行臨床量測時,容易受到磨擦音和環境噪音的干擾,醫生在進行聽診時可判別其與人體內聲響的差異,但在訊號分析時卻不易分辨,尤其當干擾訊號與病症訊號落在相同的頻帶時,電腦會有誤判的情形,故為了解決此訊號處理上的問題,本研究利用有限元素分析法(Finite element analysis, FEA)之套裝軟體來模擬聽診器的聲波特性,希望能藉此以科學的方式來取得更好的聽診器外形和材料之設計參數。
在模擬驗證的部份,本研究以聲學系統之集總參數模型(lumped-parameter model)為基礎,探討聲波元件的頻率響應變化,並以自製的電腦量測介面,以實物量測的方式測量聽診器實物的頻率響應,驗證軟體模擬的結果。
摘要(英) The stethoscope is one of the most important tools in clinical diagnosis, owing to its ability in facilitating non-invasive diagnosis from auscultation of internal organs. After nearly two centuries of evolution since being invented by French physician R. Laennec in the year 1816, the stethoscope has changed from the early bell stethoscope to the present electronic stethoscope. Recent technology development further promotes computerized diagnosis from digitalized auscultation signals by way of digital signal processing algorithms. All these progresses lead to a handier tool and more accurate diagnosis by the physicians.
In terms of signal processing systems, electronic stethoscopes can be regarded as a sensing component of acoustic waves. Its acoustic frequency response will affect the measured signals. Moreover, friction and environmental sounds are easily picked up by the stethoscope. These cause the physicians not much difficulty because human can easily distinguish between these interferences and the physiological signal. However, computer programs have not been able to distinguish. To solve this problem, this research uses finite element analysis (FEA) to simulate the acoustic characteristics of stethoscopes, hoping to achieve better stethoscope design parameters in shape and material.
After FEA simulation, lumped-parameter model of the acoustic system is used to explore changes in the frequency response of the acoustic component. In addition, physical measurements are performed with acoustic interface hardware. The FEA simulation is thus verified.關鍵字(中) ★ 聽診器
★ 有限元素分析法
★ 流固耦合
★ 聲學關鍵字(英) ★ Stethoscope
★ FEA
★ FSI
★ Acoustic論文目次 中文摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 v
表目錄 vii
第一章 緒論 - 1 -
1.1. 聽診器發展簡介 - 1 -
1.1.1. 現代聽診器的外型 - 1 -
1.1.2. 聽診器的發展 - 2 -
1.1.3. 電子式聽診器與電腦化發展 - 3 -
1.2. 研究動機 - 5 -
1.3. 有限元素分析簡介 - 7 -
1.4. 文獻回顧 - 8 -
第二章 聲學之有限元素分析 - 11 -
2.1. 有限元素分析基本步驟 - 11 -
2.2. 聲學基本原理 - 13 -
2.3. 有限元素分析法之流固耦合支配方程式 - 16 -
2.4. 軟體分析流程 - 21 -
第三章 赫姆霍茲諧振器之聲波模擬 - 29 -
3.1. 聲學系統之集總參數模型 - 29 -
3.2. 赫姆霍茲諧振器之集總參數模型 - 32 -
3.3. 赫姆霍茲諧振器之建模與分析 - 33 -
3.3.1. 階段一、描述問題 - 33 -
3.3.2. 階段二、進行ANSYS分析 - 34 -
3.3.3. 階段三、結果與討論 - 42 -
第四章 聽診器之聲波模擬 - 45 -
4.1. 未加隔膜之聽診器聲波模擬 - 45 -
4.2. 聽診器實物量測驗證 - 57 -
4.2.1. 聽診器實物量測之系統架構 - 57 -
4.2.2. 自製音頻電路 - 60 -
4.2.3. 量測方法與量測結果 - 63 -
4.3. 加上隔膜之聽診器聲波模擬與驗證 - 64 -
第五章 結論與未來展望 - 78 -
參考文獻 - 81 -
附錄A 赫姆霍茲諧振器分析之APDL程式 - 83 -
參考文獻 M. D. Blaufox, An Ear to the Chest: An Illustrated History of the Evolution of the Stethoscope, The Parthenon Publishing Group Inc, 2001.
聶族剛, 肺音聽診系統之可行性研究, 國立中央大學電機工程學系碩士論文, 2005.
紀國瑞, 數位聽診器之原型, 國立中央大學電機工程學系碩士論文, 2005.
溫祖建, 電腦化肺音擷取系統, 國立中央大學電機工程學系碩士論文, 2005.
余宗霖, 氣喘肺音監測系統之可行性研究, 國立中央大學電機工程學系碩士論文, 2005.
陳精一, ANSYS電腦輔助工程實務分析, 全華圖書, 2010.
S. Moaveni, 有限元素分析 : 理論與應用ANSYS, 陳新郁,林政仁 譯, 高立圖書有限公司, 2007.
R. Z. Gan, B. Feng and Q. Sun, "Three-dimensional fnite element modeling of human ear for sound transmission," Annals of Biomedical Engineering, vol. 32, no. 6, pp. 847-859, Jun. 2004.
R. Z. Gan, Q. Sun, B. Feng and M. W. Wood, "Acoustic–structural coupled finite element analysis for sound transmission in human ear—Pressure distributions," Medical Engineering & Physics, vol. 28, no. 5, pp. 395-404, Jun. 2006.
R. Z. Gan, B. P. Reeves, and X. Wang, "Modeling of Sound Transmission from Ear Canal to Cochlea," Annals of Biomedical Engineering, vol. 35, no. 12, pp. 2180-2195, Dec. 2007.
J. C. Zuercher, E. V. Carlson and M. C. Killion, "Small acoustic tubes: New approximations including isothermal and viscous effects," The Journal of the Acoustical Society of America, vol. 83, no. 4, p. 1653–1666, Apr. 1988.
P. Harper, S. S. Kraman, H. Pasterkamp and G. R. Wodicka, "An acoustic model of the respiratory track," IEEE Transactions on Biomedical Engineering, vol. 48, no. 5, p. 543–550, May. 2001.
P. Y. Ertel, M. Lawrence, R. K. Brown and A. M. Stern, "Stethoscope Acoustics II. Transmission and Filtration Patterns," Circulation, vol. 34, no. 5, pp. 899-909, Nov. 1966.
M. Abella, J. Formolo and D. G. Penney, "Comparison of the acoustic properties of six popular stethoscopes," The Journal of the Acoustical Society of America, vol. 91, no. 4, pp. 2224-2228, Apr. 1992.
劉金源, 水中聲學-水聲系統之基本操作原理, 國立編譯館, 1991.
白明憲, 工程聲學, 全華圖書, 2008.
Anonymous, "Theory Reference. Chapter 8: Acoustics," in ANSYS Documentation, ANSYS, Inc..
A. Craggs, "A finite element model for acoustically lined small rooms," Journal of Sound and Vibration, vol. 108, no. 2, p. 327–337, 22 Jul. 1986.
Anonymous, "Fluids Guide II. Acoustics 1. Acoustics," in ANSYS Documentation, ANSYS, Inc..
D. K. Cheng, Field and Wave Electromagnetics, 2nd ed., Addison-Wesley, 1989.
A. V. Oppenheim, A. S. Willsky and S. H. Nawab, Signal & system, 2nd ed., Prentice-Hall International, 1997.
B. C. Baker, "資料擷取系統最佳濾波器的選擇與設計原理Part II," http://www.eettaiwan.com/. [Online]. [Accessed 9 2013].
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2014-7-31 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare