參考文獻 |
參考文獻
[1] Gordon E. Moore, “Cramming More Components onto Integrated Circuits,” Electronics, 38, 114, (1965).
[2] B. D. Soole and H. Schumacher, “InGaAs metal-semiconductor-metal photo
detectors for long wavelength optical communication,” IEEE Journal of Quantum Electronics, 27, 737, (1991).
[3] S. Luryi et al., “New infrared detector on a silicon chip,” IEEE Transactions on Electron Devices, 31, 1135, (1984).
[4] Jifeng Liu et al., “Monolithic Ge-on-Si lasers for large-scale electronic–photonic integration,” Semiconductor Science and Technology, 27, 094006, (2012).
[5] W. C. Dash et al., “Intrinsic optical absorption in single-crystal germanium and silicon at 77℃ and 300℃,” Physical Review, 99, 1151, (1955).
[6] Roosevelt people, “Physics and application of GexSi1-x/Si strained-layer heterostructures,” IEEE Journal of Quantum Electronics, 22, 1696, (1986).
[7] F. K. LeGoues et al., “Anomalous strain relaxation in SiGe thin films and superlattices,” Physical Review Letters, 66, 2903, (1991).
[8] D. J. Eaglesham and M. Cerullo, “Dislocation-free Stranski-Krastanow growth of Ge on Si(100),” Physical Review Letters, 64, 1943, (1990).
[9] Yourui Huangfu et al., “Heteroepitaxy of Ge on Si(001) with pits and windows transferred from free-standing porous alumina mask,” Nanotechnology, 24, 185302, (2013).
[10] C. C. Wang et al., “CMOS-compatible generation of self-organized 3D Ge quantum dot array for photonic and thermoelectric applications,” IEEE Trans. Nanotechnology, 11, 657-660, (2012).
[11] S. S. Tseng, I. H. Chen, and P. W. Li, “Photoresponses in polycrystalline silicon phototransistors incorporating germanium quantum dots in the gate dielectrics,” Appl. Phys. Lett., 83, 4628, (2003).
[12] S. S. Tseng, I. H. Chen, and P. W. Li, “ Photorespones in Poly-Si Phototransistors Incorporating Germanium Quantum Dots in the Gate Dielectrics,” Appl. Phys. Lett., 93, 191112, (2008).
[13] 陳英豪,“閘介電層含鍺量子點複晶矽薄膜電晶體之光響應研究”,碩士論文,國立中央大學,民國98 年。
[14] M. H. Kuo et al., “Designer Ge quantum dots on Si: A heterostructure configuration with enhanced optoelectronic performance,” Appl. Phys. Lett., 101, 223107, (2012).
[15] 郭銘浩,““量身訂作”鍺量子點以應用於近紅外線光偵測元件之研製”,碩
士論文,國立中央大學,民國102 年。
[16] Hyo-Soon Kang et al., “Characterization of phototransistor internal gain in metamorphic high-electron-mobility transistors,” Appl. Phys. Lett., 84, 3780, (2004).
[17] Yong-Young Noh et al., “High-photosensitivity p -channel organic phototransistors based on a biphenyl endcapped fused bithiophene oligomer,” Appl. Phys. Lett., 86, 043501, (2005).
[18] Kah-Wee Ang et al., “Low-Voltage and High-Responsivity Germanium Bipolar Phototransistor for Optical Detections in the Near-Infrared Regime,”
IEEE Electron Device Letters, 29, 1126, (2008).
[19] Z. Pei, C.S. Liang et al., “High Efficient 850 nm and 1,310 nm Multiple Quantum Well SiGe/Si Heterojunction Phototransistors with 1.25 Plus GHz Bandwidth (850nm),” Int. Electron Devices Meet. 297, (2002).
[20] J.-M. Shieh et al., “Near-infrared silicon quantum dots metal-oxide semiconductor field-effect transistor photodetector,” Applied Physics Letters, 94, 241108-3, (2009).
[21] Tobat P. I. Saragi et al., “Photovoltaic and photoconductivity effect in thin-film phototransistors based on a heterocyclic spiro-type molecule,” Appl. Phys. Lett., 102, 046104, (2007).
[22] V. Foglietti, L. Mariucci et al., “Temperature dependence of the transfer characteristics of polysilicon thin film transistors fabricated by excimer laser crystallization,” Journal of Applied Physics, 85, 616-618, (1999).
[23] Zhe Qi et al., “High-performance n-type organic thin-film phototransistors based on a core-expanded naphthalene diimide,” Applied Physics Letters, 103, 053301, (2013).
[24] S. M. Sze, Physics of Semiconductor Devices, 2nd ed.: New York, Wiley Interscience, (1981).
[25] Ali K. Okyay et al., “Silicon Germanium CMOS Optoelectronic Switching Device: Bringing Light to Latch,” IEEE Transactions On Electron Devices, 54, 3253, (2007). |