姓名 |
張華然(HUA-RAN JHANG)
查詢紙本館藏 |
畢業系所 |
數學系 |
論文名稱 |
樣本平均數及樣本中位數在高斯及柯西分布位置參數之區間估計的比較
|
相關論文 | |
檔案 |
[Endnote RIS 格式]
[Bibtex 格式]
[相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
|
摘要(中) |
對稱分布之期望值若存在則必與中位數相等. 當期望值存在時, 統計學家常用樣本
平均數建立對稱分布之期望值的信賴區間. 但當期望值不存在時通常用樣本中位
數來建立對稱分布之中位數的信賴區間 (參考 Casella and Berger(2002)). 以常態
分布及柯西分布為例, 因此二分布之機率密度函數非常接近, 常常誤判. 可能將樣
本平均數用於柯西分布, 將樣本中位數用於常態分布, 此時統計學家希望知道此誤
判所導致信賴區間覆蓋機率之變化. 此外, 就固定分布而言, 樣本平均數及樣本中
位數在建立信賴區間之表現的比較, 亦為統計之重要問題. 本文將討論樣本平均數
及樣本中位數在一維及二維常態及柯西分布之位置參數 (location parameters) 的
區間估計 (interval estimation), 藉以比較此二統計量之優劣. |
摘要(英) |
The mean (if it exists) of a symmetric distribution must be equal to the median.
Statistician usually construct the confidence interval from sample mean when the
mean exist, and use sample median to construct confidence interval when the mean
does not exist. Using Normal distribution and Cauchy distribution as examples, we
misjudge often since the P.D.F. of these two distribution are similar. We may use
sample mean on Cauchy or use sample median on Gaussian. Statistician want to
observe the variation for this misjudgement and compare these two statistics. In this
paper, we compare the performance of sample mean and sample median on interval
estimations of Gaussian and Cauchy location parameters. |
關鍵字(中) |
★ 柯西分布 ★ 高斯分布 ★ 順序統計量 |
關鍵字(英) |
|
論文目次 |
第一節 簡介 1
第二節 樣本平均數在區間估計之表現 4
2.1 5
2.2 6
2.3 7
2.4 14
第三節 樣本中位數在區間估計之表現 17
3.1 18
3.2 19
3.3 20
3.4 22
第四節 比較與結論 23
參考文獻 25
附錄 26 |
參考文獻 |
[1] G.Casella and R.L. Berger (2002). Statistical inference. 2nd edition. Duxbury.
[2] W.Feller (1971). An introduction to probability theory and its application ,
vol.2(2nd ed.), Wiley. |
指導教授 |
許玉生
|
審核日期 |
2014-7-10 |
推文 |
facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu
|
網路書籤 |
Google bookmarks del.icio.us hemidemi myshare
|