摘要(英) |
In this study, the Taguchi Method, used in manufacturing semiconductor wafer carrier. Wafers were loaded/unloaded by robots and were transported by wafer carriers in semiconductor fabrication. It causes a lot of damage if wafers were broken by out of the specification wafer carrier. The purpose of this study was to improve the accuracy of injection molding and minimize the slot pitch dimensional tolerance of wafer carrier. Therefore, slot pitch was defined to quality characteristics, nominal-the-best and L9(34) orthogonal array were adopted in this study. The control factors of molding temperature, injection speed, holding pressure, holding time were used to analyze to what influence the processing parameters would work on the product quality in order to elevate the pitch of a wafer carrier with optimal processing parameters. As the results indicated that mold temperature has the greatest influence on the pitch dimension of wafer carrier, second was injection speed, third was holding time and the last was holding pressure, the contribution was 55.6% of mold temperature, and was 29.5% of injection speed after ANOVA. Moreover, using Taguchi Method to carry out the optimal injection molding process conditions were 190˚C for mold temperature, 5 cm/s for injection speed, 70 MPa for holding pressure, 9 sec for holding pressure time. After optimal processing parameters, the standard deviation result of wafer carrier pitch dimension was 0.022mm instead of 0.1095 mm from original process parameters and closer to the design specification than the present. |
參考文獻 |
[1] Gartner, “Worldwide Semiconductor Revenue”, 2013.
[2] 彭茂榮、陳玲君、蕭凱木,「 2013年第四季及全年我國半導體產業回顧與展望」,TSIA;工研院IEK、經濟部ITIS計畫,2013/8。
[3] Wgsimon, Wikipedia Web, May 2011.
[4] Shambelan, R.C., “Semiconductor Wafer Transporting Jig”, US Patent 3534862, Sep. 1968.
[5] SEMI,“Specification for Open Plastic and Metal Wafer Carriers”, Book of Semi Standards, Semi E1-0310,2013.
[6] SEMI,“Specification for Polymer Materials and Components Used in Ultrapure Water and Liquid Chemical Distribution Systems”, Book of Semi Standards, Semi F57-0312,2013.
[7] Hirata, T., & Kaya, T., & Ohga S., “Device and Method for Accommodating Semiconductor Wafers”, US Patent 3850296, Jul. 1971.
[8] Wallestad, V.C., “Wafer Basket”, US Patent 3923156, Apr. 1974.
[9] 李永昌,「應用田口法與類神經網路於射出成型製程之建構與分析」,台灣科技大學工程技術研究所自動化及控制學程,2002。
[10] 蔡文偉,「PBT/GF 射出成型製程最佳化及挫屈特性研究」,中央大學機械工程學系,碩士論文,2002。
[11] 黃臣鴻,「PC/ABS 合膠機械性質之射出成型條件最佳化」,中央大學機械工程學系,博士論文,2003。
[12] 賴懷恩,「導光板成型品質與射出成型製程參數之研究」,清華大學動力機械工程學系,碩士論文,2004。
[13] 蔡俊欽,「導光板光學設計及製程之最佳化研究」,高雄應用科技大學模具工程系,碩士論文,2004。
[14] 林啟湶,「一般常用最佳化方法在塑膠射出成型之應用」,台灣科技大學機械工程系,碩士論文,2006。
[15] 郭献彰,「超高分子量聚乙烯之機械性質與微結構成型性研究」,中央大學機械工程學系,博士論文,2010。
[16] 張睿文、郭德明、許逸書、王培仁,「射出成型機最佳化製程參數自調系統」,機械月刊第三十五卷第四期,2009/4.
[17] 蔡宏斌、蔡瑞禧、林建興,「高性能工程塑膠PEEK特性」,高分子工業,民90.10,頁42-48,2007。
[18] Parikh, M. & Kaempf, U., “SMIF: A Technology for Wafer Cassette Transfer in VLSI Manufacturing”, Solid State Technology, July, pp. 110-115, 1984.
[19] 黃欣儀,「300 mm晶圓載卸模組FOUP/LPU之污染粒子之紊流流場特性研究」,國立台灣海洋大學機械與輪機工程學系,碩士論文,2004。
[20] 張顗民,「標準機械化介面之晶圓微塵減量研究」,交通大學工學院碩專班半導體材料與製程設備組,博士論文,2008。
[21] 古震維,「晶圓儲存與傳送之汙染控制」,台北科技大學機電科技研究所,博士論文,2010。
[22] 小川洋輝、掘池靖浩,半導體潔淨技術,顏程廷譯,普林斯頓國際有限公司,2003。
[23] 李逸揚、莊惟傑、陳育誠、王孟傑,“導電性高分子應用展望」, TSIA;工研院IEK、經濟部ITIS計畫,2009/12。
[24] 張榮語,射出成型模具設計:模具設計,高立圖書有限公司,1995。
[25] 李輝煌,田口方法品質設計的原理與實務,高立圖書有限公司, 2004。
[26] 蘇朝墩,產品穩健設計,中華民國品質學會,2000。
[27] 張永彥,實用塑膠模具學,全華科技圖書有限公司,2008。
[28] 劉士榮,高分子流變學—塑膠加工之特性,高立圖書有限公司, 1995。
[29] 有方広洋,射出成形的不良對策,歐陽渭城編譯,全華圖書股份有限公司,2011。
[30] Kuo, C.F. & Su, T.L., “Optimization of Multiple Quality Characteristics for Polyether Ether Ketone Injection Molding Process”, Fibers and Polymers, Vol.7, No.4, pp. 404-413, 2006.
[31] Huang, M.C. & Tai, C.C., “The Effective Factor in the Warpage Problem of an Injection-Molded Part with a Thin Shell Feature”, Journal of Materials Processing Technology, Vol. 110, No. 1,pp. 1-9,2001.
|