參考文獻 |
[1] C. Toumazou, F.J. Lidgey, and D.G. Haigh, Analogue IC Design: the current-mode approach, Peter Peregrinus, London, 1990.
[2] M.M. Khellah and M.I. Elmasry, “A low-power high-performance current-mode multiport SRAM,” IEEE Trans. VLSI Syst., 9, pp. 590-598, 2001.
[3] M.W. Allam and M. I. Elmasry, “Dynamic current mode logic (DyCML), a new low-power high-performance logic family,” IEEE Proc. CICC, pp.421-424, 2000.
[4] A. Tanabe, M. Umetani, I. Fujiwara, T. Ogura, K. Kataoka, M. Okihara, H. Sakuraba, T. Endoh, and F. Masuoka, “0.18um CMOS 10Gb/s multiplexer/demultiplexer ICs using current mode logic with tolerance to threshold voltage fluctuation,” IEEE J. Solid-State Circuits, 36, pp. 988-996, 2001.
[5] C. Toumazou, J.B. Hughes, and N.C. Battersby, Eds. Switched Currents: an analogue technique for digital technology, Peter Peregrinus, London, 1993.
[6] B. Wilson, “Recent developments in current conveyors and current-mode circuits,” IEE Proc. G, 137, pp. 63-77, 1990.
[7] A.F. Arbel and L. Goldminz, “Output stage of current-mode feedback amplifiers, theory and applications,” Analog Integrated Circuits and Signal Processing, 2, pp.243-255, 1992.
[8] A.F. Arbel, J.E. Bowers, and J. Lauch, “Low-noise high-speed optical receiver for fiber optic systems,” IEEE J. Solid-State Circuits, 19, pp. 155-157, 1984.
[9] T. Kaulberg, “A CMOS current-mode operational amplifier,” IEEE J. Solid-State Circuits, 28, pp. 849-852, 1993.
[10] A.S. Sedra, G.W. Roberts, and F. Gohh, “The current conveyor: History, progress and new results,” IEE Proc. G, 137, pp. 78-87, 1990.
[11] F. Seguin and A. Fabre, “2 GHz controlled current conveyor in standard 0.8um BiCMOS technology,” Electron. Lett., 37, pp. 329-330, 2001.
[12] J.H. Huijsing, “Operational floating amplifier,” IEE Proc. G, 137, pp. 131-136, 1990.
[13] A.M. Ismail and A.M. Soliman, “Novel CMOS current feedback op-amp realization suitable for high frequency applications,” IEEE Trans. Circuits Syst. I, 47, pp. 918-921, 2000.
[14] H. Elwan, W. Gao, R. Sadkowski, and M. Ismail, “CMOS low-voltage class-AB operational transconductance amplifier,” Electron. Lett., 36, pp. 1439-1440, 2000.
[15] H.O. Elwan and A.M. Soliman, “Novel CMOS differential voltage current conveyor and its applications,” IEE Proc. Circuits, Devices, and Syst., 144, pp. 195-200, 1997.
[16] W. Chiu, S.I. Liu, H.W. Tsao, and J.J. Chen, “CMOS differential difference current conveyors and their applications,” IEE Proc. Circuits, Devices, and Syst., 143, pp. 91-96, 1996.
[17] M. Higashimura, “Realisation of current-mode transfer function using four-terminal floating nullor,” Electron. Lett., 27, pp. 170-171, 1991.
[18] A. Johns D. and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons, Inc. 1997.
[19] B. Nauta, Analog CMOS Filters for Very High Frequencies, Kluwer Academic Publishers, 1993.
[20] I.A. Awad and A.M. Soliman, “Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications,” Int. J. Electron., 86, pp. 413-432, 1999.
[21] L. Serrano and A. Carlosena, “Active RC impedances revisited,” Int. J. Circuit Theory and Applications, 25, pp. 289-305, 1997.
[22] A. Leuciuc, “Using nullors for realisation of inverse transfer functions and characteristics,” Electron. Lett., 33, pp. 949-951, 1997.
[23] G.W. Roberts, and A.S. Sedra, “A general class of current amplifier-based biquadratic filter circuits,” IEEE Trans. Circuits Syst., 39, pp. 257-263, 1992.
[24] H.Y. Wang and C.T. Lee, “Using nullors for realization of current-mode FTFN-based inverse filter,” Electron. Lett., 35, pp. 1889-1890, 1999.
[25] R. Senani, “A novel application of four-terminal floating nullors,” IEEE Proc., 75, pp. 1544-1546, 1987.
[26] J.A. Svoboda, “Current conveyors, operational amplifiers and nullors,” IEE Proc., pt. G, 136, pp. 317-322, 1989.
[27] M. Higashimura, “Realisation of current-mode transfer function using four-terminal floating nullor,” Electron. Lett., 27, pp. 170-171, 1991.
[28] A. Carlosena and G.S. Moschytz, “Nullators and norators in voltage to current mode transformations,” Int. J. Circuit Theory Applicat., 21, pp. 421-424, 1993.
[29] M. Desai, P. Aronhime, and J. Zurada, “Current-mode network transformations,” IEEE Proc. Int. Symp. Circuits and Systems, pp. 599-602, 1994.
[30] R. Senani, “On the transformation of RC-active oscillators,” IEEE Trans. Circuits Syst., 34, pp. 1091-1093, 1987
[31] A. Leuciuc, “The realization of inverse system for circuits containing nullors with applications in chaos synchronization,” Int. J. Circuit Theory Applicat., 26, pp. 1-12, 1998.
[32] B. Chipipop and W. Surakampontorn, “Realisation of current-mode FTFN-based inverse filter,” Electron. Lett., 35, pp. 690-692, 1999.
[33] I. A. Awad and A.M. Soliman, “Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications,” Int. J. Electron., 86, pp. 413-432, 1999.
[34] H. Schmid, “Approximating the universal active element,” IEEE Trans. Circuits Syst. II, 47, pp. 1160-1169, 2000.
[35] B. Wilson, “Tutorial review: Trends in current conveyor and current-mode amplifier designs,” Int. J. Electron., 73, pp. 573-583, 1992.
[36] J.H. Huijsing, “Operational floating amplifier (OFA).” Proc. Inst. Elect. Eng, pt. G, 137, pp. 131-136, 1990.
[37] U. Cam and H. Kuntman, “A new CMOS realization of a four terminal floating nullor (FTFN),” Int. J. Electron., 87, pp. 809-817, 2000.
[38] U. Cam, A. Toker, and H. Kuntman, “CMOS FTFN realisation based on translinear cells,” Electron. Lett., 36, pp. 1255-1256, 2000.
[39] H.Y. Wang and C.T. Lee, “Realisation of R-L and C-D immittances using single FTFN,” Electron. Lett., 34, pp. 502-503, 1998.
[40] S.I. Liu and J.L. Lee, “Insensitive current/voltage-mode filters using FTFNs,” Electron. Lett., 32, pp. 1079-1080, 1996.
[41] M.T. Abuelma’atti and H.A. Al-zaher, “Current-mode sinusoidal oscillators using single FTFN,” IEEE Trans. Circuits Syst.II, 46, pp. 69-74, 1999.
[42] L.T. Bruton, RC active circuits: theory and design, Prentice Hall, Englewood Cliffs, NJ, USA, 1980.
[43] C. Acar, “On the realization of current-mode filters using second-generation current conveyors,” Int. J. Circuit Theory Applicat., 25, pp. 229-233, 1997.
[44] S. Ozoguz and C. Acar, “Single-input and three-output current-mode universal filter using a reduced number of active elements,” Electron. Lett., 34, pp. 605-606, 1998.
[45] W. Surakampontorn, V. Riewruja, K. Kumwachara, and K. Dejhan, “Accurate CMOS-based current conveyors,” IEEE Trans. Instrum. Meas., 40, pp. 699-702, 1991.
[46] A.M. Ismail and A.M. Soliman, “Wideband CMOS current conveyor,” Electron. Lett., 34, pp. 2368-2369, 1998.
[47] S. Ozoguz, A. Toker, and O. Cicekoglu, “First-order allpass sections-based current-mode universal filter using ICCIIs,” Electron. Lett., 36, pp. 1443-1444, 2000.
[48] C.S. Hilas and Th. Laopoulos, “Circuit design: a study on voltage-mode to current—mode conversuion techniques,” Electrotechnical Conference, 3, pp. 1309-1312, 1996.
[49] S.W. Director and R.A. Rohrer, “The generalized adjoint network and network sensitivities,” IEEE Trans. Circuits Syst., 16, pp. 318-323, 1969.
[50] C.T. Lee and H.Y. Wang, “Minimum realisation for FTFN-based SRCO,” Electron. Lett., 37, pp. 1207-1208, 2001.
[51] C.M. Chang and M.J. Lee, “Voltage-mode multifunction filter with single input and three outputs using two compound current conveyors,” IEEE Trans. Circuit and Systems I, 46, pp.1364-1365, 1999.
[52] A. Fabre and M. Alami, “Universal current mode biquad implemented from two second generation current conveyors,” IEEE Trans. Circuit and Systems I, 42, pp.383-385, 1995.
[53] Z.J. Lata and P.B. Aronhime, “Cascadable current-mode biquads,” Analog Integrated Circuits and Signal Processing, 13, pp.275-284, 1997.
[54] W.K. Chen, The Circuits and Filters Handbook, CRC Press, 1995.
[55] J.W. Horng, C.C. Tsai, and M.H. Lee, “Novel universal voltage-mode biquad filter with three inputs and one output using only two current conveyors,” Int. J. Electronics, 80, pp. 543-546, 1996.
[56] G.H. Wang, Y. Fukui, K. Kubota, and K. Watanabe, “Voltage-mode to current-mode conversion by an extended dual transformation,” IEEE Proc. Int. Symp. Circuits and Systems, 3, pp. 1833-1836, 1991.
[57] B. Chipipop and W. Surakampontorn, “Realisation of current-mode FTFN-based inverse filter,” Electron. Lett., 35, pp. 690-692, 1999.
[58] G.H. Wang, K. Watanabe, and Y. Fukui, “Voltage-mode to current-mode conversion by an extended dual transformation,” IEEE Proc. Int. Symp. Circuits and Systems, Singapore, pp. 1833-1836, 1991.
[59] J.J. Friend, C.A. Harris, and J. Sabadell, “STAR: An active biquadratic filter section,” IEEE Trans. Circuits Syst., 22, pp.115-121, 1975.
[60] M. Higashimura and Y. Fukui, “Realization of all-pass and notch filters using a single current conveyor,” Int. J. Electron., 65, pp.823-828, 1988.
[61] H.Y. Wang and C.T. Lee, “Versatile insensitive current-mode universal biquad implementation using current conveyors” IEEE Trans. Circuits Syst. II, 48, pp. 409-413, 2001.
[62] J.V. Vosper and M. Heia, “Comparison of single- and dual-element frequency control in a CCII-based sinusoidal oscillator,” Electron. Lett., 32, pp. 2293-2294, 1996.
[63] A.M. Soliman, “Current mode CCII oscillators using grounded capacitors and resistors,” Int. J. Circuit Theory Appl., 26, pp.431-438, 1998.
[64] S. Celma, P.A. Martinez, and A. Carlosena, “Approach to the synthesis of canonic RC-active oscillators using CCII,” IEE Proc. Circuits, Devices Syst., 141, pp. 493-497, 1994.
[65] S. Celma, P.A. Martinez, and A. Carlosena, “Minimal realisation for single resistor controlled sinusoidal oscillator using single CCII,” Electron. Lett., 28, pp. 443-444, 1992.
[66] S.S. Gupta and R. Senani, “Grounded-capacitor current-mode SRCO: Novel application of DVCCC,” Electron. Lett., 36, pp. 195-196, 2000.
[67] C.L. Hou, R. Yean, and C.K. Chang, “Single-element controlled oscillators using single FTFN,” Electron. Lett., 32, pp. 2032-2033, 1996.
[68] S.I. Liu, “Single-resistance-controlled sinusoidal oscillator using two FTFNs,” Electron. Lett., 33, pp. 1185-1186, 1997.
[69] D.R. Bhaskar, “Single resistance controlled sinusoidal oscillator using single FTFN,” Electron. Lett., 35, pp. 190, 1999.
[70] R.M. Weng, “Single-Resistance-controlled oscillator using only one PFTFN,” IEEE Proc. APCCAS, Tianjin, pp. 213-214, 2000.
[71] C. Toumazou and F.J. Lidgey, “Universal active filter using current conveyors,” Electron. Lett., 22, pp.662-664, 1986.
[72] T. Tsukutani, M. Ishida, S. Tsuiki, and Y. Fukui, “Current-mode biquad without external passive,” Electron. Lett., 32, pp.197-198, 1996.
[73] H.O. Elwan and A.M. Soliman, “A novel CMOS current conveyor realization with an electronically tunable current mode filter suitable for VLSI,” IEEE Trans. Circuit Syst. II, pp.663-670 , 1996.
[74] J.W. Horng and M.H. Lee, “High input impedance voltage-mode lowpass, bandpass and highpass filter using current-feedback amplifiers,” Electron. Lett., 33, pp.947-948, 1997.
[75] M.T. Abuelma’atti and H.A. Al-zaher, “New universal filter with one input and five outputs using current-feedback amplifiers,” Analog Integrated Circuits and Signal Processing, 16, pp.239-244, 1998.
[76] Z.J. Lata and P.B. Aronhime, “Cascadable current-mode biquads,” Analog Integrated Circuits and Signal Processing, 13, pp.275-284, 1997.
[77] A.M. Soliman, “New current mode filters using current conveyors,” AEU Int. J. Electronics Commun., 51, pp.275-278, 1997.
[78] E.O. Gunes, A. Toker, and S. Ozoguz, “Insensitive current-mode universal filter with minimum components using dual-output current conveyors,” Electron. Lett., 35, pp.524-525, 1999.
[79] O. Oliaei and J. Porte, “Compound current conveyor (CCII+ and CCII-),” Electron. Lett., 33, pp.253-254, 1997.
[80] B. Al-hashimi, “Current mode filter structure based on dual output transconductance amplifiers,” Electron. Lett., 32, pp.25-26, 1996.
[81] A. Fabre, “Third-generation current conveyor: a new helpful active element,” Electron. Lett., 31, pp.338-339, 1995.
[82] A. Durham and W. Redman-White, “Integrated continuous-time balanced filters for 16-b DSP interfaces,” IEEE J. Solid-State Circuits, 28, pp. 835-839, 1993.
[83] G. Moon, M.E. Zaghloul, and R.W. Newcomb, “An enhancement-mode MOS voltage-controlled linear resistor with large dynamic range,” IEEE Trans. Circuits Syst., 37, pp. 1284-1288, 1990.
[84] G. Wilson and P.K. Chan, “Novel voltage controlled grounded resistor,” Electronic. Lett., 25, pp. 1725-1726, 1989.
[85] A. Carlosena and G.S. Moschytz, “Design of variable-gain current conveyors,” IEEE Trans. Circuit and Systems I, 41, pp.79-81, 1994.
[86] W. Surakampontorn and P. Thitimajshima, “Integrable electronically tunable current conveyors,” IEE Proc. Pt. G, 135, pp.71-77, 1988.
[87] A. Piovaccari, “CMOS integrated third-generation current conveyor,” Electron. Lett., 31, pp.1228-1229, 1995.
[88] A. Fabre, O. Saaid, and H. Barthelemy, “On the frequency limitations of the circuits based on second generation current conveyors,” Analog Integrated Circuits and Signal Processing, 7, pp.113-129, 1995.
[89] A.S. Sedra and P.O. Brackett, Filter theory and design: active and passive, Matrix Publishers, INC., 1978.
[90] H.Y. Wang and C.T. Lee, “Immittance function simulator using a single current conveyor,” Electron. Lett., 33, pp. 574-576, 1997.
[91] H.Y. Wang and C.T. Lee, “Systematic synthesis of R-L and C-D immittances using single CCIII,” Int. J. Electron., 87, pp. 293-301, 2000.
[92] A.S. Sedra and K.C. Smith, “A second-generation current conveyor and its applications,” IEEE Trans. Circuit Theory, 17, pp.132-134, 1970.
[93] R. Nandi, “A new equal-valued grounded-capacitor resonator realization using current conveyor,” Proc. IEEE, 67, pp.870-871, 1979.
[94] K. Pal, “Novel F.D.N.C. simulation using current conveyors,” Electron. Lett., 16, pp.639-640, 1980.
[95] A. Himura, Y. Fukui, M. Ishida, and M. Higashimura, “Immittance function simulator using a single current conveyor,” IEICE Trans, E2, pp.1279-1284, 1989.
[96] C.M. Chang, H.Y. Wang, and C.C. Chien, “Realization of series impedance functions using one CCII+,” Int. J. Electron., 76, pp. 83-85, 1994.
[97] S.I. Liu and Y.S. Hwang, “Realisation of R-L and C-D impedances using a current feedback amplifier and its applications,” Electron. Lett., 30, pp. 380-381, 1994.
[98] R. Senani, “On equivalent forms of single op-amp sinusoidal RC oscillators,” IEEE Trans. Circuits Syst. I, 41, pp. 617-624, 1994.
[99] L. Serrano and A. Carlosena, “Active RC impedances revisited,” Int. J. Circuit Theory Applicat., 25, pp. 289-305, 1997.
[100] S.I. Liu and C.Y. Yang, “Higher-order immittance function synthesis using CCIIIs,” Electron. Lett., 32, pp. 2295-2296, 1996.
[101] A. Himura, Y. Fukui, M. Ishida, and M. Higashimura, “Series impedance simulators using one CCII,” Electron. Lett., 26, pp.269-270, 1990.
[102] C.M. Chang, H.Y. Wang., and C.C. Chien, “Realization of series impedance functions using one CCII+,” Int. J. Electron, 76, pp. 83-85, 1994.
[103] R. Senani, B.A. Kumar, and M.P. Tripathi, “Systematic generation of OTA-C sinusoidal oscillators,” Electron. Lett, 26, pp. 1457-1459, 1990.
[104] M. Higashimura and Y. Fukui, “Novel method for realizing higher-order immittance function using current conveyors,” Proceedings of International Symposium on Circuits and Systems, pp. 2677-2680, 1998.
[105] M. Ishida, M. Higashimura, Y. Fukui, K. Ebisutani, “Synthesis of immittance function using current conveyors,” Proceedings of International Symposium on Circuits and Systems, pp. 2681-2684, 1998.
[106] R.M. Weng, J.R. Lai, and M.H. Lee, “Realization of nth-order series impedance function using only (n-1) current-feedback amplifiers,” Int. J. Electron, 87, pp. 63-69, 2000.
[107] W. Surakampontorn and K. Kumwachara, “CMOS-based electronically tunable current conveyor,” Electron. Lett., 28, pp.1316-1317, 1992.
[108] L. Wan and S. Natarajan, “Optimal design of CCII-K circuits for high frequency applications,” Proceedings 27th SSST, pp. 175-179, 1995.
[109] L. Wan and S. Natarajan, “Experimental verification of variable gain CCII-K circuits and Modeling of AD844,” Proceedings 29th SSST, pp. 168-172, 1997.
[110] J.A. Svoboda, L. McGory, and S. Webb, “Application of a commercially available current conveyor,” Int. J. Electron, 70, pp. 159-164, 1991.
[111] C.C. Chen, The design and analysis of new current-mode analog-to-digital converters and sample/hold circuits, Institute of Electronics, National Chiao-Tung University, Ph. D. dissertation, 1996. |