博碩士論文 101624016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:13.59.46.85
姓名 曾嬿蓉(Yen-jung Tseng)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 煤材料特性對二氧化碳吸脫附能力之影響研究
(Effects of coal characteristics on carbon dioxide ad/desorption)
相關論文
★ 有機質成熟度之染色技術應用★ 臺灣中新世石底層煤中硫及微量元素含量之沉積涵義
★ 煤素質組成對熱裂分析之影響★ 大屯火山群地熱氣與溫泉水之地化特性
★ 灰關聯分析於水庫水質綜合評判之研究 —以翡翠及石門水庫為例★ 土石流誘發因子萃取對土石流危險溪流判定之影響
★ 石油系統之有機材料與熱成熟度特性探討★ 石油系統有機材料特性及熱成熟度與油氣潛能之關係探討:以澳洲西北海域為例
★ 車籠埔斷層深鑽岩心鏡煤素反射率研究★ 從岩石風化速率探討南橫山崩 -以敏督莉颱風為例
★ 廢棄礦場環境影響綜合評估★ 河流縱剖面與構造地形指標之量化分析: 以濁水溪為例
★ 九份-金瓜石地區火成作用對有機物成熟度之影響★ 不同成熟度之有機成分探討
★ 石門水庫上游集水區水質與復興鄉人文環境之綜合研究★ 鏡煤素反射率抑制問題與熱模擬之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今溫室氣體排放增加,造成全球平均溫度也逐年增加,各地氣候異常頻傳,減少大氣中的溫室氣體─二氧化碳含量是近年來相當重要且極需解決的議題,目前二氧化碳封存被認為是能有效減少溫室氣體的方法之一。二氧化碳封存是將二氧化碳灌入到耗竭油氣田、深層鹽水層和煤層等地方,藉由岩體將二氧化碳吸附,保存在岩層中,以降低大氣中的二氧化碳量。台灣各地有許多廢棄的煤礦坑與含煤層,可以評估做為二氧化碳封存的目標區。本實驗目的是了解煤的材料特性對二氧化碳吸脫附能力的影響,預期可應用於煤層封存二氧化碳的參考。本研究採集6個台灣煤樣進行實驗,本實驗主要分為三部分,一是將煤樣粉碎至60 mesh,放置烘箱內(50℃)一天後,將煤樣放入儲煤瓶抽真空並逐步增加壓力至800psi,逐步減少壓力,觀察煤樣吸脫附和壓力改變之關係,再將二氧化吸附實驗所得的數據帶入 Langmuir Isotherms ,計算出煤樣Langmuir Volume Parameter(煤樣最大吸附氣體儲存能力),二是煤樣敲碎過篩,再加入黏合劑倒入圓形鋼模,經脫模拋光後,用反射光顯微鏡測量鏡煤素反射率(Ro%)並計算煤素質比例,三為求數據的多樣性,加入蕭健宏(2013) 20個台灣煤樣特性數據,將煤的Langmuir Volume參數和材料特性去做比對,找出這些因子之間的相關性。研究結果,二氧化碳吸附能力與煤級呈曲線關係,與鏡煤素含量呈正比,與礦物質含量呈反比。在因素分析中,綜合所有煤樣特性分析下,由於特性之間互相影響,故實際能分析可用數據為19個,而分析結果為VL、PL、平均孔徑、水分與氣體吸脫附能力之相關性較佳。
摘要(英) Greenhouse gas emission contributes to global warming and abnormal weather conditions. In recent years, how to reduce carbon dioxide quantity in the atmosphere is an important environmental issue. Geological sequestration of CO2 is considered to be an effective way of reducing greenhouse gas in the atmosphere. Possible sequestration sites include depleted oil reservoir, saline aquifer and unmineable coal seam. The purpose of this study is to evaluate the effects of coal characteristics upon the ad/desorption of CO2. A total of six coal samples were collected, and the experiment was divided into three parts (1) Coal samples were crushed to < 250μm, and then placed in a drying oven at 50 ℃ for a day, put coal samples into a sample vessel and gradually increase the pressure to 800psi, and then progressively reduce the pressure. Adsorbed and desorbrd CO2 under various pressure were recorded. The CO2 ad/desorption data were then analyzed by Langmuir Isotherms to calculate Langmuir Volume Parameter (maximum adsorption coal gas storage capacity, VL); (2) Coal samples were made into pellts to measure their vitrinite reflectance and maceral composition under reflected light microscope; (3) Combined with coal data from Shaw (2012), Lamgmuir Volume parameters can be correlated among various factors. The results showed that adsorption of CO2 exhibits a curved relationship with coal rank, positively correlated with vitrinite content, and negatively correlated with mineral matter content. As for factor analysis, the influence of characteristics among each other can be analyzed for 19 available sets of data.The results indicate VL, PL, average pore size, and moisture exhibit good correlation with ad/desorption of CO2.
關鍵字(中) ★ 煤
★ 二氧化碳吸脫附
★ 因素分析
關鍵字(英) ★ coal
★ carbon dioxide ad/desorption
★ factor analysis
論文目次 中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xi

一、緒論 1
二、文獻回顧 5
2-1 煤岩學 5
2-1-1 煤素質 5
2-1-2 煤級(煤化作用) 7
2-1-3 成熟度 7
2-2 煤層中氣體吸脫附 9
2-2-1 等溫吸附曲線 10
2-2-2 遲滯效應(hysteresis loop) 13
2-2-3 影響吸脫附氣體之因素 15
2-3 煤樣吸脫附氣體之計算方式及綜合評估方法 23
2-3-1 氣體吸附量計算 23
2-3-2 Langmuir Equation 26
2-3-3 統計評估方法-因素分析(Factor Analysis) 29
三、研究區域及樣本介紹 35
3-1 研究區域概述 35
3-1-1 南莊層(上部含煤層) 36
3-1-2 石底層(中部含煤層) 37
3-1-3 木山層(下部含煤層) 38
3-2 研究樣本 40
四、研究方法 42
4-1 研究方法概述 42
4-2 二氧化碳吸脫附實驗 43
4-2-1 樣本製備 45
4-2-2 實驗步驟 45
4-3 煤餅 47
4-3-1 煤餅製作 47
4-3-2 煤餅拋光 49
4-3-3 煤素質組成分析 51
4-3-4 鏡煤素反射率 52
4-4 掃描式電子顯微鏡 53
4-5 SPSS統計程式 56
五、結果與討論 61
5-1 煤樣特性與二氧化碳吸附能力的關係 61
5-1-1 煤層中氣體吸脫附實驗數據 61
5-1-2 Langmuir Isotherms參數 65
5-1-3 Langmuir等溫吸附曲線 67
5-1-4 煤素質與礦物質百分比 70
5-1-5 煤級 71
5-2 SEM觀察 73
5-3 因素分析 76
5-3-1 煤素質、煤級及礦物質和二氧化吸附能力之因素分析 76
5-3-2 元素分析和二氧化吸附能力之因素分析 79
5-3-3 工業分析和二氧化吸附能力之因素分析 82
5-3-4 綜合所有特性和二氧化吸附能力之因素分析 85
六、結論 91
參考文獻 93
附錄: 吸脫附實驗數據 100
參考文獻 〔1〕 Faiz, M.M., Saghafi, A., Barclay, S.A., Stalker, L., Sherwood, N.R. and Whitford, D.J., “Evaluating geological sequestration of CO2 in bituminous coals: The southern Sydney Basin, Australia as a natural analogue”, International Journal of Greenhouse Gas Control, 1, pp. 223-235, 2007.
〔2〕 行政院環境保護署: 主題專欄-溫室氣體。http://www.epa.gov.tw/QuickFind/Q41.htm。
〔3〕 行政院環境保護署: 環保業務 >溫室氣體減量管制 > 減量規劃 > 國家通訊 > 溫室氣體排放統計。http://www.epa.gov.tw/ch/artshow.aspx?busin=12379&art=2009011715443552&path=12437
〔4〕 IPCC, IPCC special report on carbon dioxide capture and storage, Final Draft, IPCC Working Group III on Mitigation of Climate Change, 2005.
〔5〕 Robertson E. P., “Economic analysis of carbon dioxide sequestration in Powder River Basin coal”, International Journal of Coal Geology, 77, pp. 234-241, 2009.
〔6〕 Chadwick, A., Arts, R., Bernstone, C., May, F., Thibeau, S., Zweigel, P. “Best practice for storage of CO2 in saline aquifers: Observations and Guidelines from the SACS and CO2STORE Projects.”, European Union, pp. 273, 2007.
〔7〕 Gaucher, E. C., Defossez, P. D. C., Bizi1, M., Bonijoly, D., Disnar, J. R., Défarge, L. F., Garnier, C., Finqueneisel, G., Zimny, T., Grgic, D., Pokryszka, Z., Lafortune, S., Gilbert, V. S., “Coal laboratory characterisation for CO2 geological storage”, Energy Procedia , 4, pp.3147-3154, 2010.
〔8〕 Saghafi, A., Faiz, M. and Roberts, D., “CO2 storage and gas diffusivity properties of coals from Sydney Basin, Australia”, International Journal of Coal Geology, 70, pp. 240-254, 2007.
〔9〕 Reeves, S.R., “Geologic Sequestration of CO2 in Deep, Unmineable Coalbeds: An Integrated Research and Commercial-Scale Field Demonstration Project”, SPE Annual Technical Conference and Exhibition , 2001.
〔10〕 藍一平,「澳洲煤岩氣體吸附模式研究」,中央大學,碩士論文,2013。
〔11〕 嚴治民,徐永忠,現地調查災害案例結果。http://ir.lib.pccu.edu.tw/retrieve/47894/gsweb14.pdf
〔12〕 蕭健宏,「台灣煤樣之二氧化碳吸脫附特性研究」,國立中央大學,碩士論文,2013。
〔13〕 孫立中,「抑制鏡煤素反射率之量測成因-以分離台灣裕峰煤為例」,國立中央大學,博士論文,2000。
〔14〕 Stach, E., Mackowsky, M. T., Teichmüller, Taylor, G. H., Chandra, D. and Teichmüller, R., Stach’s Textbook of coal petrology, Berlin Stuttgar, Gebruder Borntraeger, 1982.
〔15〕 ASTM, Classification of coals by rank, D 388-77, 1977
〔16〕 王成安,「中新世含煤地層之熱成熟機制討論」,國立中央大學,碩士論文,2010。
〔17〕 http://www.eurofrasia.com/userfiles/AM-001.pdf
〔18〕 Ruthven, D. M., Principles of Adsorption and Adsorption Processes, John Wiley & Sons Inc, 1984.
〔19〕 Faiz, M., Saghafi, A., Sherwood, N. and Wang, I., “The influence of petrological properties and burial history on coal seam methane reservoir characterisation, Sydney Basin, Australia”, International Journal of Coal Geology, 70, pp. 193-208, 2007.
〔20〕 Bromhal, G.S., Sams, W.N., Jikich, S., Ertekin, T. and Smith, D.H., “Simulation of CO2 sequestration in coal beds: The effects of sorption isotherms”, Chemical Geology, 217, pp. 201-211, 2005.
〔21〕 Brunauer, S., Deming, L.S., Deming, W.E., and Teller, E.,” On a Theory of the van der Waals Adsorption of Gases”, J. Am. Chem. Soc., 62, 7, pp. 1723-1732, 1940.
〔22〕 Keller, J.U. and Staudt, R., Gas Adsorption Equilibria, 2005.
〔23〕 White, C.M., Smith, D.H., Jones, K.L., Goodman, A.L., Jikich, S.A., LaCount, R.B., DuBose, S.B., Ozdemir, E., Morsi, B.I. and Schroeder, K.T., “Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery:A Review”, Energy & Fuels, 19, 3, pp. 660-724, 2005.
〔24〕 楊逸楨,「土壤無機相對有機污染物吸附特性之研究」,國立中央大學,碩士論文,2007。
〔25〕 IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1, Colloidand Surface Chemistry, Pure and Applied Chemistry, 31, pp. 578 , 1972.
〔26〕 Ozdemir, E., Morsi, B.I., Schroeder, K., “CO2 adsorption capacity of Argonne premium coals”, Fuel, 83, pp. 1085-1094, 2004.
〔27〕 Harpalani, S. and Chen, G., “Estimation of changes in fracture porosity of coal with gas emission”, Fuel, 74, pp. 1491-1498, 1995.
〔28〕 Harpalani, S., Prusty, B.K. and Dutta, P., “Methane/CO2 Sorption Modeling for Coalbed Methane Production and CO2 Sequestration”, Energy & Fuels, 20, pp. 1591-1599, 2006.
〔29〕 Hol, S., Spiers, C.J., “Competition between adsorption-induced swelling and elastic compression of coal at CO2 pressures up to 100 MPa”, Journal of the Mechanics and Physics of Solids, 60, 11, pp. 1862-1882, 2012.
〔30〕 Cai, Y., Liu, D., Pan, Z., Yao, Y., Li, J., Qiu, Y., “Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China”, Fuel, 103, pp. 258-268, 2013.
〔31〕 Gurdal, G. and Yalcin M.N., “Pore volume and surface area of the Carboniferous coals from the Zonguldak basin (NW Turkey) and their variations with rank and maceral composition”, International Journal of Coal Geology, 48, pp. 133-144, 2001.
〔32〕 Mastalerz, M., Gluskoter, H. & Rupp, J., “Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA”, International Journal of Coal Geology, 60, pp. 43-55, 2004.
〔33〕 Day, S., Duffy, G., Sakurovs, R. & Weir, S., “Effect of coal properties on CO2 sorption capacity under supercritical conditions”, International Journal of Greenhouse Gas Control, 2, pp. 342-352, 2008.
〔34〕 Laxminarayana, C. and Crosdale, P.J., “Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals”, International Journal of Coal Geology, 40, pp. 309-325, 1999.
〔35〕 Gensterblum, Y., Merkel, A., Busch, A., Krooss, B, M., ” High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture”, International Journal of Coal Geology, 118, pp. 45-57, 2013.
〔36〕 Dutta, P., Bhowmik, S., Das, S., “Methane and carbon dioxide sorption on a set of coals from India”, International Journal of Coal Geology, 85, pp. 289-299, 2011.
〔37〕 Gűrdal, G., Yalçın, M,N., “Gas adsorption capacity of Carboniferous coals in the Zonguldak basin (NW Turkey) and its controlling factors”, Fuel, 79, pp. 1913-1924, 2000.
〔38〕 Mavor, M.J., Owen, L.B. & Pratt, T.J., “Measurement and evaluation of coal sorption isotherm data”, Society of Petroleum Engineers Annual Technical Conference and Exhibition, pp. 157-170,1990.
〔39〕 Romanov, V., Soong, Y. & Schroeder, K., “Volumetric Effects in Coal Sorption Capacity Measurements”, Chem Eng Technol, 29, 3, pp. 368-374, 2006.
〔40〕 Gas Research Institute, A guide to determining coalbed gas content, 1995.
〔41〕 Hall, K.R. and Yarborough, L., “A new equation of state for Z-Factor calculations”, Oil and Gas Journal, 71, 25, pp. 82-93, 1973.
〔42〕 Langmuir, I., “The adsorption of gases on plane surfaces of glass, mica and platinum”, J. Am. Chem. Soc., 40, 8, pp. 1361-1403, 1918.
〔43〕 Atkins, P.W., Elements of physical chemistry, 2009.
〔44〕 Gas Research Institute, A guide to determining coalbed gas content, 1995.
〔45〕 陳順宇著,多變量分析,華泰書局,台北市,1998年7月。
〔46〕 http://www.mcu.edu.tw/department/management/stat/ch_web/etea/SPSS/Applied_Multivariate_Data_Analysis_ch7.pdf
〔47〕 魏稽生,譚立平,臺灣能源礦產及地下水資源,第三卷,,經濟部中央地質調查所,新北市,2000年。
〔48〕 賴克富,劉英毓,謝嘉榮,台灣的煤礦,陳雨嵐等編者,遠足文化事業股份有限公司,新北市,2006年。
〔49〕 鄧屬予,臺灣的沉積岩,經濟部中央地質調查所,共235頁,1997。
〔50〕 魏稽生,台灣能源礦產及地下水資源,台灣經濟礦物,第3卷,68-121頁,2000年。
〔51〕 何春蓀,台灣基隆沿海區至桃園大溪間煤田地質及構造,經濟部中央地質調查所,第2號,17-70頁,1975年。
〔52〕 陳源培編著,台灣地質,台灣省應用地質技師公會,台北市,民國2008年。
〔53〕 賴克富,劉英毓,謝嘉榮,台灣的煤礦,陳雨嵐等編者,遠足文化事業股份有限公司,新北市,2006年。
〔54〕 薛慶良,「煤吸附CO2實驗評估與應用」,國立台北科技大學,碩士論文,2011年7月。
〔55〕 Ting, F.T.C., “Petrographic techniques in coal analysis. In: Karr, C., Jr. (Eds.), Analytical Methods for Coal and Coal Products”, Academic Press, pp. 3-26, 1978.
〔56〕 楊尊忠,「石油系統有機材料特性及熱成熟度」,國立中央大學,碩士論文,2005年6月。
〔57〕 Bustin, R.M., “Quantifying macerals: some statistical and practical considerations”, International Journal of Coal Geology, 17, pp.213-238, 1991.
〔58〕 蔡龍珆,煤層地化特徵與組成分佈變化研究,經濟部石油基金獎勵石油開發技術研究發展計畫九十三年度執行報告,經濟部石油基金管理委員會委辦,國立中央大學應用地質所執行,2004年。
〔59〕 Stach E., Mackowsky M.T, Teichüller M., Taylor G.H., Chandra D. and Teichmüller R, Stach’s textbook of coal petrology, Bornstraeger, Berlin, 3, 1982.
〔60〕 Karr, J.C., Analytical Methods for Coal and Coal Products , Academic Press, Inc., New York , 1978.
〔61〕 Tissot, B.P., Welte, D.H., Petroleum formation and occurrence:a New approach to oil gas exploration, Berlin, Heidelberg, NewYork, 1984.
〔62〕 王成安,「中新世含煤地層之熱成熟機制探討」,國立中央大學,碩士論文,2010年1月。
〔63〕 Davis, A., The reflectance of coal. In: Karr, C., Jr. (eds.) :Analytical Methods for Coal and Coal Products, Academic Press Inc, 1978.
〔64〕 汪建民,材料分析,中國材料科學學會, 新竹縣,2001年。
〔65〕 http://fshare.stust.edu.tw/retrieve/41876/index.html。
〔66〕 陽世瑩,SPSS統計分析即學即用,碁峯資訊股份有限公司,台北市,2009年12月
〔67〕 維基百科:SPSS。http://zh.wikipedia.org/wiki/SPSS。
〔68〕 吳萬全,「台煤岩相特性之探討及應用」,臺灣礦業,第四十二卷,78-98,1990年。
指導教授 蔡龍珆(Louis Loung-Yie Tsai) 審核日期 2014-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明