參考文獻 |
[1] US Geological Survey (2008) Magnitude 7.9—Eastern Sichuan, China, 2008 May 12 06:28:01UTC. Available at http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/
[2] R.Q. Huang, X.J. Pei, X.M. Fan, W.F. Zhang, S.G. Li, and B.L. Li, “The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China ”, Landslides, Vol. 9, pp.131-142, 2012.
[3] X.W. Xu, X.Z. Wen, G.H. Yu, G.H. Chen Y. Klinger, J. Hubbard, and J. Shaw, “Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China ”, Geology, Vol. 37, pp. 515-518, 2009.
[4] A.M. Lin, Z.K. Ren, D. Jia, and X.J. Wu, “Co-seismic thrusting rupture and slip distribution produced by the 2008 Mw 7.9 Wenchuan earthquake, China ”, Tectonophysics, Vol. 471, pp. 203-215, 2009.
[5] J. Liu-Zeng, Z. Qhang, L. Wen, P. Tapponnier, J. Sun, X. Xing, G. Hu, Q. Xu, L. Zeng, L. Ding, C. Ji, K.W. Hudnut, and J. van der Woerd, “Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East–west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet ”, Earth and Planetary Science Letters, Vol. 286, pp. 355-370, 2009.
[6] Y.Q. Li, D. Jia, J.H. Shaw, J. Hubbard, A.M. Lin, M.M. Wang, L. Luo, H.B. Li, and L. Wu, “Structural interpretation of the coseismic faults of the Wenchuan earthquake: Three‐dimensional modeling of the Longmen Shan fold‐and‐thrust belt ”, Journal of Geophysical Research, Vol. 115, B04317, doi:10.1029/2009JB006824, 2010.
[7] R.Q. Huang, X.J. Pei, and T.B. Li, “Basic characteristics and formation mechanism of the largest scale landslide at Daguangbao occurred during the Wenchuan earthquake ”, Journal of Engineering Geology , Vol. 17, No. 6, pp. 730-741, 2008. (in Chinese with English abstract)
[8] R.Q. Huang and W. Li, “Development and distribution of geohazards triggered by 5.12 Wenchuan earthquake in China ”, Science in China Series E: Technological Sciences, Vol. 52, No. 4, pp. 810-819 2009.
[9] M. Chigira, X. Wu, T. Inokuchi, and G.H. Wang, “Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China ”, Geomorphology, Vol. 118, No. 3-4, pp.225-238, 2010.
[10] Q. Xu and X.J. Dong, “Genetic Types of Large-Scale Landslides Induced by Wenchuan Earthquake”, Earth Science – Journal of China University of Geosciences, Vol. 36, No. 6, pp. 1134-1142, 2011. (in Chinese with English abstract)
[11] X.N. Xu, S.W. Li, X.Q. Wang, L.S. Wang, J. Zhang, L. Zhu, and M. Shen, “Characteristics of Formation Mechanism and Kinematics of Daguangbao Landslide Caused by Wenchuan Earthquake, Sichuan, China ”, Journal of Engineering Geology, Vol. 21, No. 2, pp. 269-281, 2013. (in Chinese with English abstract)
[12] J. D. Weeks and T. E. Tullis, “Frictional Sliding of Dolomite: A Variation in Constitutive Behavior ”, Journal of Geophysical Research, Vol. 90, No. B9, p.p. 7821-7825, 1985
[13] N. De Paola, T. Hirose, T. Mitchell, G. Di Toro, C. Viti, and T. Shimamoto, “Fault lubrication and earthquake propagation in thermally unstable rocks ”, Geology, Vol. 39, No. 1, p.p. 35-38, 2011
[14] T. Shimamoto and J. M. Logan, “Effect of simulated gouge on the sliding behavior of Tennessee sandstone: Nonclay gouges ”, Journal of Geophysical Research, Vol. 86, No. B4, p.p. 2902-2914, 1981
[15] G. Di Toro, R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco, and T. Shimamoto, “Fault lubrication during earthquakes ”, Nature, Vol. 471, pp. 494-497, 2011.
[16] F.C. Dai, C. Xu, X. Yao, L. Xu, X.B. Tu, and Q.M. Gong, “Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China ”, Journal of Asian Earth Sciences, Vol. 40, pp. 883-895, 2011.
[17] Y. Yin, M. Wang, B. Lin, and Z. Feng, “Dynamic response characteristics of DaGuangbao landslide triggered by Wenchuan earthquake ”, Chinese Journal of Rock Mechanics and Engineering, Vol. 31, No. 10, pp. 1970-1982, 2012. (in Chinese with English abstract)
[18] C.L. Tang, J.C. Hu, M.L. Lin, J. Angelier, C.Y. Lu, Y.C. Chen, and H.T Chu, “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation ”, Engineering Geology, Vol. 106, pp. 1-19, 2009.
[19] Y.P. Yin, Y.L. Cheng, J. Wang, M. Wang, B. Liu, Y. Song, and J.T. Liang, “Remote sensing research on Dahuang gigantic rockslide triggered by Wenchuan earthquake”, Journal of Engineering Geology, Vol. 19, No. 5, 674-684, 2011. (in Chinese with English abstract)
[20] T. Shimamoto and A. Tsutsumi, “A new rotary-shear high-speed frictional testing machine: its basic design and scope of research ”, J. Tectonic Res. Group of Japan, Vol. 39, p.p. 65-78, 1994.
[21] T. Hirose and T. Shimamoto, “Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting ”, Journal of Geophysical Research, Vol. 110, B05202, doi:10.1029/2004JB003207, 2005a.
[22] T. Hirose and T. Shimamoto, “Slip-Weakening Distance of Faults during Frictional Melting as Inferred from Experimental and Natural Pseudotachylytes ”, Bulletin of the Seismological Society of America, Vol. 95, No. 5, pp. 1666–1673, 2005b.
[23] T. Shimamoto and T. Togo, “Earthquakes in the Lad ”, Geophysics, Vol. 338, No. 54, p.p. 54-55, 2012.
[24] M. Sawai, T. Shimamoto, and T. Togo, “Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes ”, Journal of Structural Geology, Vol. 38, p.p. 117-138, 2012.
[25] K. Mizoguchi, T. Hirose, T. Shimamoto, and E. Fukuyama, “Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake ”, Geophysical Research Letters, Vol. 34, L01308, doi:10.1029/2006GL027931, 2007.
[26] C.T. Lee, “Sensibility Analysis of Rock Wedge Stability ”, Technical Applied of Engineering Geology Workshop, Taiwan, p.p. 315-343, 1989 (In Chinese)
[27] T. Togo, S.L. Ma, and T. Hirose, “High-velocity friction of faults: A review and implication for landslide studies ”, An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, p.p. 205-216, 2009.
[28] J. Byerlee, ”Friction of rocks ”, Pure Application Geophysics, Vol. 116, p.p. 615-626, 1978
[29] Paterson, M. S. and Wong, T. F., Experimental rock deformation – the brittle field, Springer Berlin Heidelberg, New York, 2005
[30] R. Han, T. Hirose and T. Shimamoto, “Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates ”, Journal of Geophysical Research, VOL. 115, B03412, doi:10.1029/2008JB006136, 2010.
[31] Y.B. Zhang, G. Chen, L. Zheng, Y. Li, and J. Wu, “Effects of near-fault seismic loadings on run-out of large-scale landslide: A case study ”, Engineering Geology, Vol. 166, p.p. 216-236, 2013.
[32] H. C. Chiu, “Stable baseline correction of digital strong-motion data ”, Bulletin of the Seismological Society of America, Vol. 87, No. 4, p.p. 932-944, 1997.
[33] Hynes-Griffin, M.E. and Franklin, A.G., Rationalizing the Seismic Coefficient Method, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, 1984.
[34] S.J. Shand, “The pseudotachylyte of Parijs (Orange Free State), and its relation to ‘Trap-Shotten Gneiss’ and ‘Flinty Crust-Rock’”, Quarterly Journal of the Geological Society of London, Vol. 72, p.p. 198-221, 1916.
[35] E.C. Ferré, J.L. Allen, and A. Lin, “Pseudotachylytes and seismogenic friction: an introduction to current research ”, Tectonophysics, Vol. 402, p,p, 1-2, 2005.
[36] R. Han, T. Shimamoto, J.I. Ando, and J.H. Ree, “Seismic slip record in carbonate-bearing fault zones: An insight from high-velocity friction experiments on siderite gouge ”, Geology, Vol. 35, p.p. 1131-1134, 2007.
[37] R. Han, T. Hirose, T. Shimamoto, Y. Lee, and J.C. Ando, “Granular nanoparticles lubricate faults during seismic slip ”, Geology, Vol. 39, p.p. 599-602, 2011.
[38] J. H. Wu and C. H. Chen, “Application of DDA to simulate characteristics of the Tsaoling landslide ”, Computers and Geotechnics, Vol. 38, p.p. 761-750, 2011.
|