博碩士論文 101624003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:78 、訪客IP:3.15.34.244
姓名 曹家哲(Chia-che Tsao)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 汶川地震誘發大光包巨型山崩啟動及幾何特性研究
(The geometric characteristics and initiation mechanisms of the earthquake-triggered Daguanbao landslide)
相關論文
★ 台灣中部德基至梨山地區岩石劈理位態分布特性之研究★ 台北盆地松山層土壤性質之空間分析
★ 新店溪之地形研究★ 運用類神經網路進行隧道岩體分類
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 大肚溪流域河階地形研究★ 台南台地暨鄰近地區之台南層及其構造運動
★ 台灣東北部地區隱沒帶地震強地動衰減式之研究★ 車籠埔斷層北段之地下構造研究
★ 運用類神經網路進行地震誘發山崩之潛感分析★ 地形地質均質區劃分與山崩因子探討
★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討
★ 軟弱沉積岩層滲透異向性之探討★ 由世界應力量測資料探討不同地體構造區的應力特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中國四川省大光包山崩為2008年汶川地震誘發之規模最大的巨型山崩,亦是百年來全球體積最大山崩之一,土方量約高達10.51億立方公尺。根據過去的認知,此種規模的楔型破壞發生的可能性極低,因此,了解大光包巨型山崩的發生機制與幾何特性具有指標性的意義。本研究利用遙測影像分析、野外調查、室內實驗與邊坡穩定分析等方法進行此一山崩之案例研究。經現地調查發現,此山崩為楔型岩體滑動,其南側主要受控於白雲岩(dolomite)之層面,而北側斷裂面受控於一組高角度走向節理,上述兩組弱面之交線約以傾角14°向N70°E傾沒。本研究利用災前災後地形資料、推測的地質構造(南側層面偏轉以及北側鋸齒狀節理)和災前災後磷礦工棚位置限制滑動範圍,以建立此山崩之幾何模型。結果顯示塊體滑動距離約1.9公里且過程中產生逆時針偏轉,與典型楔型滑動略有不同。根據現地觀察得知,主要滑動帶以角礫(breccia)為主,內部夾有數層延伸性良好、約數公厘厚的黃色及紅色泥層。本研究採集大光包山崩滑動面之白雲岩以及泥層,進行XRD (X-ray diffraction)分析、SEM (scanning electron microscope)微觀觀察與旋剪試驗,並由試驗結果引入擬靜態邊坡穩定分析(pseudo-static slope stability analysis)搭配強地動資料,以了解此山崩之發生機制與運動特性。XRD結果顯示,白雲岩和泥層的組成極為相似,主要皆為白雲石所構成。根據旋剪試驗在正向應力11.47MPa(白雲岩)和1~3MPa(泥層)以及剪動速度0.0009~1.3m/s的條件下之結果,白雲岩和泥層之尖峰摩擦係數落在0.52~0.96和0.75~0.92之間,而穩態摩擦係數則介於0.1~0.57和0.13~0.74之間,若將所得摩擦係數引入擬靜態邊坡穩定分析,塊體在未受地震力之前顯得非常穩定(F.S. = 2.45),並在水平地震力達到0.32 以上時產生破壞 (F.S.< 1)。由於白雲岩和泥層之旋剪結果顯示,穩態摩擦係數在速度1.3m/s的條件下經過長距離剪動後皆可低於0.25(~tan(14°);楔形體弱面交線傾角),換言之,一旦塊體被啟動,此山崩塊體將受慣性力產生高速且長距離滑移。
摘要(英) The Daguangbao landslide which triggered by the 2008 Wenchuan earthquake is one of the largest earthquake-triggered landslides in the world over the past century. Therefore, it is important to well document this landslide, such as the geometry of the sliding mass, the dominating structures, and the failure mechanisms. In this study, remote sensing images analysis, field investigation, laboratory experiment and slope stability analysis were adopted to characterize this Daguangbao landslide. Based on the remote sensing images and pre- and post- DTMs, as well the field works, the dominating structures of this landslide are folded bedding plane and a steeped-out joint system, which outcropped at the south and north of the landslide site respectively. Accordingly, this landslide is a gigantic, atypical wedge failure. With the inferred slip planes, the intersection line is curved and counterclockwise rotated, which fit the trajectory of mining tent well. Meanwhile, the intersection line will be daylighted. That is, rock mass shear-off on the toe of this landslide, as assumed by most of the researchers, is no more required with adopting the inferred sliding surfaces. According to the proposed wedge shape, pre- and post- DTMs, the volume of moving mass is about 10.51 × 108 m3 with a travel distance of 1.9 km. The characteristics of the sliding surface on the south part of the landslide site were carefully investigated. The identified slip zone was composed of breccia and gouge layers of several centimeters thick. The intact dolomite rocks adjacent to the slip zone and the thin gouges were sampled to conduct X-ray diffraction analysis. The results show that the mineral of the gouges is nearly identical to the dolomite country rocks. The friction coefficients of the dolomite discontinuity and gouges near the sliding surface were measured utilizing a rotary shear apparatus under a normal stresses of 11.47 MPa (dolomite discontinuity) and 1~3 MPa (gouges) with slip rates of 0.0009~1.3 m/s. A threshold velocity of 0.001 m/s was identified that the slip strengthening behavior under slowly shearing turned into slip weakening. The peak friction coefficient of the tested dry dolomite discontinuities and wet gouges are 0.52~0.96 and 0.75~0.92 and the steady-state friction coefficient of the two samples are 0.1~0.57 and 0.13~0.74, respectively. The wedge analysis shows that the slope is quite stable (F.S. = 2.45) without the seismic force. However, the gigantic wedge can be triggered by the Wenchuan earthquake based on the pseudo-static slope stability analysis. Moreover, the friction coefficient of the gouges under large shear displacement will drop below 0.25 (~tan(14°); the intersection line plunged 14°) when the shear velocity exceeds 1.3 m/s. That is, the gigantic wedge can be speeded up by the inertial force generated by the earthquake and keep moving rapidly with long run-out.
關鍵字(中) ★ 大光包山崩
★ 地震誘發山崩
★ 楔型破壞
★ 旋剪試驗
★ 摩擦係數
關鍵字(英) ★ Daguangbao landslide
★ earthquake-triggered
★ wedge failure
★ rotary-shear test
★ friction coefficient
論文目次 摘要 i
ABSTRACT iii
誌謝 vi
Contents vii
List of Illustrations ix
List of tables xiv
List of notations xv
1 Introduction 1
1.1 Wenchuan earthquake and Daguangbao landslide 1
1.2 Geological setting 3
1.3 Failure mechanism of the Daguangbao landslide 6
1.4 Strength of carbonate rocks and gouges under low to high shear velocity 7
1.5 Objectives 9
2 Methodology 11
2.1 Topography and image analysis 11
2.2 Field investigation 19
2.3 Laboratory test 23
2.3.1 Rotary shear 23
2.3.2 Mineral and particle size analysis 29
2.3.3 Microstructure observation 29
2.4 Pseudo-static stability analysis of rock wedge 29
2.4.1 Rigid wedge method 30
2.4.2 Maximum shear stress method 32
3 Results 34
3.1 Dominating structures of Daguangbao landslide 34
3.1.1 Joints sets and faults 34
3.1.2 Bedding plane and bedding parallel faults 35
3.2 Determining the geometry of the sliding surface 39
3.2.1 A typical wedge model 39
3.2.2 Modification of the simple wedge model – folded bedding plane and stepping-out joint system 42
3.2.3 The proposed geometry of the sliding surface – a non-typical wedge model 49
3.3 The sliding and deposition volume of Daguangbao landslide 51
3.4 Physical properties and mineral composition of the material near the sliding surface 55
3.5 Strength of the materials near the sliding surface 58
3.5.1 Dolomites 58
3.5.2 Bedding parallel fault gouges 67
3.6 Pseudo-static analysis of rigid body 79
3.6.1 Rigid wedge stability analysis – strength selection 80
3.6.2 Wedge stability analysis – without seismic force 80
3.6.1 Rigid wedge stability analysis – with seismic force 81
4 Discussion 86
4.1 The mineralogy analysis of the black material and sheared dolomite 86
4.2 The relationship between shear velocity microstructures and friction behaviors of gouges 89
4.3 Kinematics of Daguangbao landslide 93
5 Conclusions 97
Reference 99
Appendix 1 104
Appendix 2 105
Appendix 3 137
Appendix 4 143
參考文獻 [1] US Geological Survey (2008) Magnitude 7.9—Eastern Sichuan, China, 2008 May 12 06:28:01UTC. Available at http://earthquake.usgs.gov/earthquakes/eqinthenews/2008/us2008ryan/
[2] R.Q. Huang, X.J. Pei, X.M. Fan, W.F. Zhang, S.G. Li, and B.L. Li, “The characteristics and failure mechanism of the largest landslide triggered by the Wenchuan earthquake, May 12, 2008, China ”, Landslides, Vol. 9, pp.131-142, 2012.
[3] X.W. Xu, X.Z. Wen, G.H. Yu, G.H. Chen Y. Klinger, J. Hubbard, and J. Shaw, “Coseismic reverse- and oblique-slip surface faulting generated by the 2008 Mw 7.9 Wenchuan earthquake, China ”, Geology, Vol. 37, pp. 515-518, 2009.
[4] A.M. Lin, Z.K. Ren, D. Jia, and X.J. Wu, “Co-seismic thrusting rupture and slip distribution produced by the 2008 Mw 7.9 Wenchuan earthquake, China ”, Tectonophysics, Vol. 471, pp. 203-215, 2009.
[5] J. Liu-Zeng, Z. Qhang, L. Wen, P. Tapponnier, J. Sun, X. Xing, G. Hu, Q. Xu, L. Zeng, L. Ding, C. Ji, K.W. Hudnut, and J. van der Woerd, “Co-seismic ruptures of the 12 May 2008, Ms 8.0 Wenchuan earthquake, Sichuan: East–west crustal shortening on oblique, parallel thrusts along the eastern edge of Tibet ”, Earth and Planetary Science Letters, Vol. 286, pp. 355-370, 2009.
[6] Y.Q. Li, D. Jia, J.H. Shaw, J. Hubbard, A.M. Lin, M.M. Wang, L. Luo, H.B. Li, and L. Wu, “Structural interpretation of the coseismic faults of the Wenchuan earthquake: Three‐dimensional modeling of the Longmen Shan fold‐and‐thrust belt ”, Journal of Geophysical Research, Vol. 115, B04317, doi:10.1029/2009JB006824, 2010.
[7] R.Q. Huang, X.J. Pei, and T.B. Li, “Basic characteristics and formation mechanism of the largest scale landslide at Daguangbao occurred during the Wenchuan earthquake ”, Journal of Engineering Geology , Vol. 17, No. 6, pp. 730-741, 2008. (in Chinese with English abstract)
[8] R.Q. Huang and W. Li, “Development and distribution of geohazards triggered by 5.12 Wenchuan earthquake in China ”, Science in China Series E: Technological Sciences, Vol. 52, No. 4, pp. 810-819 2009.
[9] M. Chigira, X. Wu, T. Inokuchi, and G.H. Wang, “Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China ”, Geomorphology, Vol. 118, No. 3-4, pp.225-238, 2010.
[10] Q. Xu and X.J. Dong, “Genetic Types of Large-Scale Landslides Induced by Wenchuan Earthquake”, Earth Science – Journal of China University of Geosciences, Vol. 36, No. 6, pp. 1134-1142, 2011. (in Chinese with English abstract)
[11] X.N. Xu, S.W. Li, X.Q. Wang, L.S. Wang, J. Zhang, L. Zhu, and M. Shen, “Characteristics of Formation Mechanism and Kinematics of Daguangbao Landslide Caused by Wenchuan Earthquake, Sichuan, China ”, Journal of Engineering Geology, Vol. 21, No. 2, pp. 269-281, 2013. (in Chinese with English abstract)
[12] J. D. Weeks and T. E. Tullis, “Frictional Sliding of Dolomite: A Variation in Constitutive Behavior ”, Journal of Geophysical Research, Vol. 90, No. B9, p.p. 7821-7825, 1985
[13] N. De Paola, T. Hirose, T. Mitchell, G. Di Toro, C. Viti, and T. Shimamoto, “Fault lubrication and earthquake propagation in thermally unstable rocks ”, Geology, Vol. 39, No. 1, p.p. 35-38, 2011
[14] T. Shimamoto and J. M. Logan, “Effect of simulated gouge on the sliding behavior of Tennessee sandstone: Nonclay gouges ”, Journal of Geophysical Research, Vol. 86, No. B4, p.p. 2902-2914, 1981
[15] G. Di Toro, R. Han, T. Hirose, N. De Paola, S. Nielsen, K. Mizoguchi, F. Ferri, M. Cocco, and T. Shimamoto, “Fault lubrication during earthquakes ”, Nature, Vol. 471, pp. 494-497, 2011.
[16] F.C. Dai, C. Xu, X. Yao, L. Xu, X.B. Tu, and Q.M. Gong, “Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China ”, Journal of Asian Earth Sciences, Vol. 40, pp. 883-895, 2011.
[17] Y. Yin, M. Wang, B. Lin, and Z. Feng, “Dynamic response characteristics of DaGuangbao landslide triggered by Wenchuan earthquake ”, Chinese Journal of Rock Mechanics and Engineering, Vol. 31, No. 10, pp. 1970-1982, 2012. (in Chinese with English abstract)
[18] C.L. Tang, J.C. Hu, M.L. Lin, J. Angelier, C.Y. Lu, Y.C. Chen, and H.T Chu, “The Tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: Insights from a discrete element simulation ”, Engineering Geology, Vol. 106, pp. 1-19, 2009.
[19] Y.P. Yin, Y.L. Cheng, J. Wang, M. Wang, B. Liu, Y. Song, and J.T. Liang, “Remote sensing research on Dahuang gigantic rockslide triggered by Wenchuan earthquake”, Journal of Engineering Geology, Vol. 19, No. 5, 674-684, 2011. (in Chinese with English abstract)
[20] T. Shimamoto and A. Tsutsumi, “A new rotary-shear high-speed frictional testing machine: its basic design and scope of research ”, J. Tectonic Res. Group of Japan, Vol. 39, p.p. 65-78, 1994.
[21] T. Hirose and T. Shimamoto, “Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting ”, Journal of Geophysical Research, Vol. 110, B05202, doi:10.1029/2004JB003207, 2005a.
[22] T. Hirose and T. Shimamoto, “Slip-Weakening Distance of Faults during Frictional Melting as Inferred from Experimental and Natural Pseudotachylytes ”, Bulletin of the Seismological Society of America, Vol. 95, No. 5, pp. 1666–1673, 2005b.
[23] T. Shimamoto and T. Togo, “Earthquakes in the Lad ”, Geophysics, Vol. 338, No. 54, p.p. 54-55, 2012.
[24] M. Sawai, T. Shimamoto, and T. Togo, “Reduction in BET surface area of Nojima fault gouge with seismic slip and its implication for the fracture energy of earthquakes ”, Journal of Structural Geology, Vol. 38, p.p. 117-138, 2012.
[25] K. Mizoguchi, T. Hirose, T. Shimamoto, and E. Fukuyama, “Reconstruction of seismic faulting by high-velocity friction experiments: An example of the 1995 Kobe earthquake ”, Geophysical Research Letters, Vol. 34, L01308, doi:10.1029/2006GL027931, 2007.
[26] C.T. Lee, “Sensibility Analysis of Rock Wedge Stability ”, Technical Applied of Engineering Geology Workshop, Taiwan, p.p. 315-343, 1989 (In Chinese)
[27] T. Togo, S.L. Ma, and T. Hirose, “High-velocity friction of faults: A review and implication for landslide studies ”, An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, p.p. 205-216, 2009.
[28] J. Byerlee, ”Friction of rocks ”, Pure Application Geophysics, Vol. 116, p.p. 615-626, 1978
[29] Paterson, M. S. and Wong, T. F., Experimental rock deformation – the brittle field, Springer Berlin Heidelberg, New York, 2005
[30] R. Han, T. Hirose and T. Shimamoto, “Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates ”, Journal of Geophysical Research, VOL. 115, B03412, doi:10.1029/2008JB006136, 2010.
[31] Y.B. Zhang, G. Chen, L. Zheng, Y. Li, and J. Wu, “Effects of near-fault seismic loadings on run-out of large-scale landslide: A case study ”, Engineering Geology, Vol. 166, p.p. 216-236, 2013.
[32] H. C. Chiu, “Stable baseline correction of digital strong-motion data ”, Bulletin of the Seismological Society of America, Vol. 87, No. 4, p.p. 932-944, 1997.
[33] Hynes-Griffin, M.E. and Franklin, A.G., Rationalizing the Seismic Coefficient Method, U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, 1984.
[34] S.J. Shand, “The pseudotachylyte of Parijs (Orange Free State), and its relation to ‘Trap-Shotten Gneiss’ and ‘Flinty Crust-Rock’”, Quarterly Journal of the Geological Society of London, Vol. 72, p.p. 198-221, 1916.
[35] E.C. Ferré, J.L. Allen, and A. Lin, “Pseudotachylytes and seismogenic friction: an introduction to current research ”, Tectonophysics, Vol. 402, p,p, 1-2, 2005.
[36] R. Han, T. Shimamoto, J.I. Ando, and J.H. Ree, “Seismic slip record in carbonate-bearing fault zones: An insight from high-velocity friction experiments on siderite gouge ”, Geology, Vol. 35, p.p. 1131-1134, 2007.
[37] R. Han, T. Hirose, T. Shimamoto, Y. Lee, and J.C. Ando, “Granular nanoparticles lubricate faults during seismic slip ”, Geology, Vol. 39, p.p. 599-602, 2011.
[38] J. H. Wu and C. H. Chen, “Application of DDA to simulate characteristics of the Tsaoling landslide ”, Computers and Geotechnics, Vol. 38, p.p. 761-750, 2011.
指導教授 董家鈞、李錫堤(Jia-jyun Dong Chyi-tyi Lee) 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明