博碩士論文 986404003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.117.8.63
姓名 賴庚辛(Keng-Hsin Lai)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 模擬飽和孔隙介質中化學溶解反應波前之型態發展
(Simulated Morphological Evolution of Chemical Dissolution Fronts in a Fluid-Saturated Porous Medium)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 孔隙介質礦物內之反應化學傳輸造成地下流體流動型態改變與化學溶解反應波前的發展,對地球科學、石油工業與環境工程等都是一個重要的研究領域。數值模式為研究相關現象常用的工具,在這些模式中分別使用不同滲透係數-孔隙率模式描述孔隙率與滲透係數兩者間的關係,然而並無實驗數據證明何者較為合適;過去模式發展多考慮孔隙介質礦物之滲透係數為等向性,然而在自然孔隙介質礦物中滲透係數多存在異向性與異質性。本研究分別探討:(1)滲透係數-孔隙率模式;(2)滲透係數異向性對化學溶解反應波前型態發展之影響。第一部分結果顯示使用修正型Fair-Hatch模式與Kozeny-Carman模式預測到相似的孔隙率反應波前型態發展,而使用Verma-Pruess模式獲得較低的第一與第二臨界地下水上游壓力梯度。第二部份結果顯示在地下水上游壓力梯度較低時,滲透係數異向性主導側向流體捕捉進而影響流體集中機制,顯著改變形成單指狀波前的第一臨界地下水上游壓力梯度,然而滲透係數異向性對反應波前的影響隨著地下水上游壓力梯度增加而降低,形成雙指狀波前的第二臨界地下水上游壓力梯度未受到顯著的影響。
摘要(英) The formation of dissolution-induced finger patterns in geological media is an important issue in a varity of geological settings and industrial applications. Numerical models have been developed to investigate the morphological evolution of chemical dissolution fronts within a fluid-saturated porous medium. In these numerical models, the properties that govern fluid flow through the geological medium are porosity and permeability, which may change in time and space due to mineral dissolution. To describe simultaneous changes in permeability and porosity induced by mineral dissolution, the permeability-porosity model has been incorporated into the numerical model. Several permeability-porosity models have been proposed but experimental data that justify one is superior from the others are limited. Furthermore, the permeability of geological medium has been considered to be isotropic, even though the permeability anisotropy is more likely to occur in naturally geological medium. Until recently the effect of permeability anisotropy has received little attention. Accordingly, this study attempts to investigate the effects of permeability-porosity models and permeability anisotropy on morphological evolution of a chemical dissolution front. A series of numerical simulation are performed to evaluate the relevant effects on the morphological evolution of a chemical dissolution front. Results show that the morphological evolution is similar in both the modified Fair-Hatch and Kozeny-Carman model. The Verma-Pruess model yields a relatively low primary and secondary critical upstream pressure gradient value owing to the flow-focusing effect enhanced by the stronger dependence of permeability on porosity. Our simulations demonstrate that the choice of the permeability-porosity function plays an important roles on the evolution patterns of the dissolution front. A adequate description of the permeability-porosity relationship may lead to a more realistic simulation of field problems. Capture of lateral flow is significantly influenced by permeability anisotropy ratios, thereby affecting the flow-focusing mechanism. Permeability anisotropy significantly modify the primary upstream pressure gradient. The effects of the permeability anisotropy on the evolution of a chemical dissolution front decrease with an increasing upstream pressure gradient. The difference between chemical dissolution fronts of the two media with permeability anisotropy ratio equal and smaller than unity diminishes when the upstream pressure gradient is large.

關鍵字(中) ★ 孔隙率反應波前
★ 滲透係數
★ 異向性
關鍵字(英)
論文目次 LIST OF FIGURES……………………………………....…………………………..……….v
LIST OF ABBREVIATIONS....................................vii
LIST OF SYMBOLS………………………………………….………………...…………..viii
1. Introduction…………………………………………………………………………..…1
1.1 Background…………………..……………………………….…..……………………1
1.2 Literature review……………………………………………….…..…………………..3
1.3 Permeability-porosity models…………………………………….…..…..6
1.4 Permeability anisotropy…………………………………………….…..………………8
1.5 Objectives…………………………………………………………….….………...….9
2. Mathematical model…………………………………..………………….……………...12
2.1 Governing equations of the coupled nonlinear system………..................………….....12
2.2 Non-dimensional governing equations………………………………….…………….16
2.3 Solution methods………………………………………………………….…………..17
3. Results and discussions………………………………………………………………..25
3.1 Effect of permeability-porosity models…………………………28
3.1.1 Case I Homogeneous media with single local non-uniformity……….28
3.1.2 Case II Homogeneous media with two local non-uniformities…………..…….30
3.2 Effect of permeability anisotropy……………………………………….31
4. Conclusions………………………………………………………………………………48
References……………………………………………………………………………………50
Appendix……………………………………………………………………………………..55
參考文獻 Assouline, S., Or, D., 2006. Anisotropy factor of saturated and unsaturated soils. Water
Resources Research, 42: W12403.
Békri, S., Thovert, J.F., Adler, P.M., 1995. Dissolution of porous media. Chemical Engineering
Science, 50(17): 2765-2791.
Chadam, J., Hoff, D., Merino, E., Ortoleva, P., Sen, A., 1986. Reactive infiltration instabilities.
IMA Journal of Applied Mathematics, 36(3): 207-221.
Chadam, J., Ortoleva, P., 1990. Morphological instabilities in physico-chemical systems. Earth-
Science Reviews, 29(1-4): 175-181.
Chadam, J., Ortoleva, P., Qin, P., Stamicar, R., 2001. The effect of hydrodynamic dispersion on
reactive flows in porous media. European Journal of Applied Mathematics, 12(5): 557-
569
Chadam, J., Ortoleva, P., Sen, A., 1988. A weakly nonlinear stability analysis of the reactive
infiltration interface. SIAM Journal on Applied Mathematics, 48(6): 1362-1378.
Chen, J.S., Liu, C.W., 2002. Numerical simulation of the evolution of aquifer porosity and
species concentrations during reactive transport. Computers & Geosciences, 28(4): 485-
499.
Chen, J.S., Liu, C.W., 2004. Interaction of reactive fronts during transport in a homogeneous
porous medium with initial small non-uniformity. Journal of Contaminant Hydrology,
72(1-4): 47-66.
Chen, J.S., Liu, C.W., Lai, G.X., Ni, C.F., 2009. Effects of mechanical dispersion on the
morphological evolution of a chemical dissolution front in a fluid-saturated porous
medium. Journal of Hydrology, 373(1-2): 96-102.
Chen, W., Ortoleva, P., 1990. Reaction front fingering in carbonate-cemented sandstone. Earth-
Science Reviews, 29(1-4): 183-198.
51
Daccord, G., 1987. Chemical dissolution of a porous medium by a reactive fluid. Physical
Review Letters, 58(5): 497-482.
Fredd, N.C., Fogler, H.S., 1988. The kinetics of calcite dissolution in acetic acid solutions.
Chemical Engineering Science, 53(22): 3863-3874.
Freedman, V., Ibaraki, M., 2002. Effects of chemical reactions on density-dependent fluid flow:
on the numerical formulation and the development of instabilities Advances in Water
Resources, 25(4): 439-453.
Gaus, I., Azaroual, M., Czernichowski-Lauriol, I., 2005. Reactive transport modeling of the
impact of CO2 injection on the clayey cap rock at Sleipner (North Sea). Chemical Geology,
217: 319-337.
Hinch, E.J., Bhatt, B.S., 1990. Stability of an acid front moving through porous rock. Journal
of Fluid Mechanics, 212: 279-288.
Hoefner, M.L., Fogler, H.S., 1988. Pore evolution and channel formation during flow and
reaction in porous media. AIChE Journal, 34(1): 45-54.
Jacob, B., 1972. Dynamic of fluids in porous media. Elsevier, Amsterdam, pp. 764.
Kalia, N., Balakotaiah, V., 2007. Modeling and analysis of wormhole formation in reactive
dissolution of carbonate rocks. Chemical Engineering Science, 62(4): 919-928.
Kalia, N., Balakotaiah, V., 2009. Effect of medium heterogeneities on reactive dissolution of
carbonates. Chemical Engineering Science, 64(2): 376-390.
Kang, Q., Zhang, D., Chen, S., 2003. Simulation of dissolution and precipitation in porous
media. Journal of Geophysical Research, 108: 2505.
Koenig, R.A., Stubbs, P.B., 1986. Interference testing of a coalbed methane reservoir. The
unconventional gas technical symposium. Society of petroleum engineers, Texas, USA
paper 15225.
Lebron, I., Schaap, M.G., Suarez, D.L., 1999. Saturated hydraulic conductivity prediction from
52
microscopic pore geometry measurements and neural network analysis. Water Resources
Research, 35(10): 3149-3158.
Noiriel, C., Gouze, P., Bernard, D., 2004. Investigation of porosity and permeability effects
from microstructure changes during limestone dissolution. Geophysical Research Letters,
31: L24603.
Ortoleva, p., Chadam, J., Merino, E., Sen, A., 1987. Geochemical self-organization II: The
reactive-infiltration instability. American Journal of Science, 287: 1008-1040.
Ortoleva, P., Merino, E., Moore, C., Chadam, J., 1987. Geochemical self-organization I:
Reaction-transport feedbacks and modeling approach. American Journal of Science, 287:
979-1007.
Pape, H., Clauser, C., Iffland, J., 1999. Permeability prediction based on fractal pore-space
geometry. Geophysics, 64(5): 1447-1460.
Pruess, K., Oldenburg, C., Moridis, G., 1999. TOUGH2 user′s guide, version 2.0. Lawrence
Berkeley Laboratory Report LBL-43134. Berkeley, California.
Renard, F., Gratier, J.P., Ortoleva, P., Brosse, E., Bazin, B., 1998. Self-organization during
reactive fluid flow in a porous medium. Geophysical Research Letters, 25: 385-388.
Scheidegger, A.E., 1961. General theory of dispersion in porous media. Journal of Geophysical
Research, 66(10): 3273-3278.
Sherwood, J.D., 1987. Stability of a plane reaction front in a porous medium. Chemical
Engineering Science, 42(7): 1823-1829.
Steefel, C.I., Lasaga, A.C., 1990. The evolution of dissolution patterns: Permeability change
due to coupled flow and reaction. In chemical modeling of aqueous systems II (eds. D.
Melchior and R.L. Bassett), ACS symposium series No. 416, American Chemical Society,
Washington. 212-225.
Stewart, M.L., Ward, A.L., Rector, D.R., 2006. A study of pore geometry effects on anisotropy
53
in hydraulic permeability using the lattice-Boltzmann method. Advances in Water
Resources, 29(9): 1328-1340.
Szymczak, P., Ladd, A.J.C., 2009. Wormhole formation in dissolving fractures. Journal of
Geophysical Research, 114: B06203.
Szymczak, P., Ladd, A.J.C., 2011. Instabilities in the dissolution of a porous matrix.
Geophysical Reserach Letters, 38: L07403.
Vaughan, P.J., 1987. Analysis of permeability reduction during flow of heated, aqueous fluid
through westerly granite. In Tsang, C.F. (Ed.), Coupled processes associated nuclear waste
repositories. Academic Press, New York. 529-539.
Verma, A., Pruess, K., 1988. Thermohydrologic conditions and silica redistribution near highlevel
nuclear wastes emplacedin saturated geological formations. Journal of Geophysical
Research, 93(B2): 1159-1173.
Weisbrod, N., Alon-Mordish, C., Konen, E., Yechieli, Y., 2012. Dynamic dissolution of halite
rock during flow of diluted saline solutions. Geophysical Reserach Letters, 39: L09404.
Witt, K.J., Brauns, J., 1983. Permeability ‐ anisotropy due to particle shape. Journal of
Geotechnical & Geoenvironmental Engineering 109(9): 1181-1187.
Wooding, R.A., 1978. Large-scale geothermal field parameters and convection theory. New
Zealand Journal of Science, 21: 219-228.
Xin, J., Peirce, A., Chadam, J., Ortoleva, P., 1993. Reactive flows in layered porous media II:
the shape stability of the reaction interface. SIAM Journal on Applied Mathematics, 53(2):
319 - 339
Zhao, C., Hobbs, B.E., Ord, A., 2010. Theoretical analyses of the effects of solute dispersion
on chemical-dissolution front instability in fluid-saturated porous media. Transport in
porous media, 84(3): 629-653.
Zhao, C., Hobbs, B.E., Ord, A., Horbbs, B.E., Peng, S., 2009. Effects of mineral dissolution
54
ratios on chemical-dissolution front instability in fluid-saturated porous media Transport
in Porous Media, 82(2): 317-335.
Zhao, C., Hobbs, B.E., Ord, A., Hornby, P., Peng, S., 2008b. Effect of reactive surface areas
associated with different particles shapes on chemical-dissolution front instability in fluidsaturated
porous medium. Transport in Porous Media, 73(1): 75-94.
Zhao, C., Hobbs, B.E., Ord, A., Hornby, P., Peng, S., 2008c. Morphological evolution of threedimensional
chemical dissolution front in fluid-saturated porous media: a numerical
simulation approach. Geofluids, 8(2): 113-127.
指導教授 陳瑞昇 審核日期 2014-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明