博碩士論文 101323072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.225.72.113
姓名 詹彥信(Yen-Hsin Chan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 固態氧化物燃料電池使用甲烷燃氣之性能和電化學阻抗實驗研究
(An Experimental Study on Performance and Electrochemical Impedance of Solid Oxide Fuel Cells using Methane)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文使用實驗室已建立之加壓型固態氧化物燃料電池(Solid Oxide
Fuel Cell, SOFC)鈕扣型實驗載具,量測分析陽極端使用甲烷燃氣所產生之
碳沉積效應,以及其對鈕扣型陽極支撐全電池性能曲線(I-V curve)與電化學
阻抗頻譜(Electrochemical Impedance Spectra, EIS)之影響。實驗條件為固定氣體流率(陽極CH4 + N2: 50 + 150 = 200 sccm 和陰極Air: 200 sccm),在溫度 750 oC 和壓力1 atm,分別使用加濕(約3% H2O)與未加濕陽極甲烷燃氣,並分別量測其I-V curve 與EIS,以探討加濕效應對碳沉積之影響。在固定負 載條件下(0.8 V),持續量測電池性能16 小時 (每隔2 小時量測一次,共9次含開始第一次量測),以探討在固定負載條件下之電池操作時間對碳沉積對和電池性能的影響。在進行前述碳沉積實驗前,於陽極端先通入氫氣(H2:
200 sccm),並量測其性能和EIS,以作為碳沉積實驗之基本比較數據。並且,
在碳沉積實驗後,以氫氣還原法,通入氫氣取代陽極甲烷/氮燃氣,以探討
碳沉積是否可以被還原?以及其對電池性能有何影響?最後,使用掃描式
電子顯微鏡- 微區元素分析儀(Scanning Electron Microscope - EnergyDispersive Spectrometry, SEM-EDX),來分析驗證使用甲烷燃氣的電池碳沉積現象。實驗結果顯示可知,使用加濕甲烷燃氣能明顯降低EIS 之極化阻抗,並且有效地提高電池性能。例如:在750 oC 和0.7 V 條件下,使用未
加濕甲烷燃氣的功率密度為130 mW/cm2,而使用加濕甲烷燃氣的功率密度
ii則可被提升至256 mW/cm2。由SEM-EDX 針對陽極支撐全電池片所拍攝之
微觀照片,確認使用甲烷燃氣的電池片有碳沉積現象之存在。本研究結果,
應有助於進一步地了解SOFC 使用天然氣(甲烷)為陽極燃氣,所形成碳沉積
之現象,及其對SOFC 電化學反應機制之影響,這對未來SOFC 產業之建
立和推廣應有所助益。
摘要(英) A high-pressure solid oxide fuel cell (SOFC) experimental setup, which has been established in our laboratory, was used to measure and analyze the impact of carbon deposition on an anode-supported button full cell when using methane as a fuel in the anode based on power generating characteristics and electrochemical impedance spectra (EIS) measurements of the button full cell. All experiments were conducted at constant flow rates (CH4 + N2: 50 + 150 = 200 sccm in anode and air: 200 sccm in cathode) and at fixed
temperature (750 oC) and pressure (1 atm). Both humidified (about 3 % H2O added) and nonhumidified methane fuels were applied. By comparing their measured current-voltage curves
(I-V curve) and EIS data, the influence of adding a small amount of water to the carbon deposition of SOFC may be investigated. To further analyze the effect of operation time on the carbon deposition, measurements at a constant voltage (0.8 V) were continuously taken for 16 hours (every two hours one measurement, total 9 measurements including the first starting measurement). Before starting the carbon deposition experiment, we used hydrogen (H2: 200 sccm) in the anode to measure the button full cell’s I-V curves and EIS that served as a baseline data. After the completion of the carbon deposition measurements, hydrogen (H2: 200 sccm in anode) was again used to see whether the carbon deposition could be reduced and what happened to the cell performance. In the end of experiment, we applied the Scanning Electron Microscope-Energy Dispersive Spectrometry (SEM-EDX) to examine whether the carbon deposition did occur in the aforesaid anode-supported button full cell when methane was used. Results show that by adding a small amount of water into the fuel (humidified methane), the polarization resistance of EIS of the cell can be effectively decreased as compared to the case without humidification (non-humidified methane), resulting in a clear increase of the cell performance. For example, at 750 oC and 0.7 V, the power density for the case of humidified methane was 256 mW/cm2, while only 130 mW/cm2 for the case of non-humidified methane. Based on SEM-EDX micro-structure images, it is confirmed that the carbon deposition occurs in the present anode-supported button full cell. These results should be of help in understanding the carbon deposition phenomenon and its impact to the electrochemical mechanism of SOFC when using nature gas as the anode fuel. This may beuseful for the promotion of the application of SOFC.
關鍵字(中) ★ 固態氧化物燃料電池
★ 鈕扣型陽極支撐全電池
★ 直接甲烷 燃氣
★ 碳沉積
★ 加濕效應
★ 電化學阻抗頻譜
關鍵字(英) ★ SOFC
★ anode-supported button full cell
★ direct methane operation
★ carbon deposition
★ humidification
★ electrochemical impedance spectra
論文目次 摘 要 ................................................................................................................ i
Abstract ........................................................................................................... iii
致 謝 .............................................................................................................. iv
目 錄 ............................................................................................................... v
圖表目錄 ......................................................................................................... vii
符號說明 .......................................................................................................... ix
第一章前言 ....................................................................................................... 1
1.1 研究動機 ........................................................................................... 1
1.2 問題所在 ........................................................................................... 2
1.3 解決方法 ........................................................................................... 4
1.4 論文綱要 ........................................................................................... 4
第二章文獻回顧 ................................................................................................ 6
2.1 SOFC 之簡介 .................................................................................... 6
2.2 電化學阻抗頻譜 ............................................................................... 8
2.3 燃料電池之極化現象 ..................................................................... 11
2.3.1 歐姆極化 ............................................................................... 11
2.3.2 活化極化 ............................................................................... 11
2.3.3 濃度極化 ............................................................................... 11
2.4 SOFC 使用碳氫燃氣 ...................................................................... 12
vi
2.5 還原碳沉積與減少碳生成 ............................................................. 15
第三章實驗設備與量測方法 .......................................................................... 27
3.1 SOFC 高壓實驗測試平台 .............................................................. 27
3.2 實驗流程與量測操作參數設定 ...................................................... 29
第四章結果與討論 .......................................................................................... 36
4.1 使用不同燃氣對電池性能的影響 .................................................. 36
4.1.1 使用甲烷燃氣與氫氣對開迴路電壓之影響 ........................ 36
4.1.2 使用甲烷燃氣與氫氣對性能與阻抗頻譜之影響 ................ 37
4.2 加濕效應對陽極碳沉積現象的影響 .............................................. 38
4.2.1 加濕效應對陽極碳沉積之性能曲線分析 ............................ 38
4.2.2 加濕效應對陽極碳沉積之電化學組抗頻譜分析 ................ 39
4.3 氫氣還原法對改善陽極碳沉積的影響 .......................................... 41
4.4 加濕效應對SOFC 使用甲烷燃氣下SEM-EDX 之影響 ............. 43
第五章結論與未來工作 .................................. 57
5.1 結論 ............................................ 57
5.2 未來工作 ....................................... 58
參考文獻 ............................................ 59
附錄.............................................. 63
參考文獻 1] E. R. Ray, R. A. Basel, J. F. Pierre, Pressurized Solid Oxide Fuel Cell
testing, Fuel Cells Review Meeting 95 Conference, Morgantown, WV,
USA, 1995
[2] S. C. Singhal, Advances in solid oxide fuel cell technology, Solid State
Ionics, Vol. 135, pp. 305-313, 2000
[3] M. A. Buccheri and J. M. Hill, Methane Electrochemical Oxidation
Pathway over a Ni/YSZ and La0.3Sr0.7TiO3 Bi-Layer SOFC Anode, J. The
Electrochemical Society, Vol. 159(4), pp. B361 – B367, 2012
[4] S. McIntosh, H. He, S. Lee, O. Costa-Nunes, V. V. Krishnan, J. M. Vohs,
and R. J. Gorte, An Examination of Carbonaceous Deposits in
Direct-Utilization SOFC Anodes, J. The Electrochemical Society, Vol.
151(4), pp. A604 – A608, 2004
[5] 張軒維,加壓型固態氧化物燃料電池性能與阻抗之定量量測與分析,
碩士論文,國立中央大學,2011
[6] 鄭浩昇,加壓型固態氧化物燃料電池量測與分析:壓力、溫度與質量
流率效應,碩士論文,國立中央大學,2012
[7] 謝易達,加壓型SOFC 陽極支撐與電解質支撐單電池堆量測與分析,
碩士論文,國立中央大學,2013
[8] 吳佩真,加壓鈕扣型陽極支撐SOFC 實驗量測與活化和濃度過電位分
析計算,碩士論文,國立中央大學,2013
[9] 李雪茹,加壓SOFC 陰極半電池實驗研究,碩士論文,國立中央大學,
2013
[10] C. M. Huang, S. S. Shy, C. H. Lee, On flow uniformity in various
interconnects and its influence to cell performance of planar SOFC, J.
Power Sources, Vol. 183, pp. 205-213, 2008
[11] C. M. Huang, S. S. Shy, H. H. Li, C. H. Lee, The impact of flow
distributors on the performance of solid oxide fuel cell, J. Power Sources,Vol. 195, pp. 6282-9286, 2010
[12] S. S. Shy, C. M. Huang, H. H. Li, C. H. Lee, The impact of flow
distributors on the performance of solid oxide fuel cell – part II:
electrochemical impedance measurements, J. Power Sources, Vol. 196, pp.
7555-7563, 2011
[13] H.W. Chang, C.M. Huang, S.S. Shy, T An experimental investigation of
pressurized planar solid oxide fuel cells using two different flow
distributors, J. Power Sources, Vol. 250, pp. 21-29, 2014
[14] P. C. Wu, H. S. Jheng, and S. S. Shy, Electrochemical Impedance
Measurement and Analysis of Anodic Concentration Polarization for
Pressurized Solid Oxide Fuel Cells, J. The Electrochemical Society, Vol.
161(4), pp. F513-F517, 2014
[15] Y. Patcharavorachot, A. Arpornwichanop and A. Chuachuensuk,
Electrochemical study of a planar solid oxide fuel cell: Role of support
structures, J. Power Sources, Vol. 177, pp. 254-261
[16] R. J. Kee, A. M. Dean, M. T. Lusk, Fundamental physics and chemistry of
direct electrochemical oxidation in SOFC, Solid State Energy Conversion
Alliance, Asilomar, 2005
[17] W. Vielstich, A. Lamm, & H. A. Gasteiger, Handbook of Fuel Cells:
Fundamentals Technology and Applications, 1st Edition, John Wiely &
Sons, Ltd, England, 2003
[18] L. Larminie, A. Dicks, Fuel cell systems explained, 2nd Edition, John
Wiely & Sons. Ltd., England, 2003
[19] Q. A. Huang, R. Hui, B.Wang, J. Zhang, A review of AC impedance
modeling and validation in SOFC diagnosis, Electrochimica Acta, Vol. 52,
pp. 8144-8164, 2007
[20] J. B. Jorcin, M. E. Orazem, N. Pébére, and B. Tribollet, CPE analysis by
local electrochemical impedance spectroscopy, Electrochimica Acta, Vol.
51, pp. 1473-1479, 2006
[21] A Leonide, V. Sonn, A. Weber, and E. Ivers-Tiffée, Evaluation and
modeling of the cell resistance in anode-supported solid oxide fuel cells, J.
The Electrochemical Society, Vol. 155, pp. B36-B41, 2008
[22] R. Kikuchi, T. Yano, T. Takeguchi, K. Eguchi, Characteristics of anodic
polarization of solid oxide fuel cells under pressurized conditions, Solid
State Ionics, Vol.174, pp. 111-117, 2004
[23] J. Nielsen, M. Mogensen, SOFC LSM:YSZ cathode degradation induced
by moisture: An impedance spectroscopy study, Solid State Ionics, Vol. 189, pp. 74-81, 2011
[24] R. O. Hayre, S. W Cha, W. Colella, F. B. PrinzJohn, Fuel Cell
Fundamentals, 2nd Ed., John Wiley & Sons, Inc., New York, 2009
[25] S. H. Chan, K. A. Khor, Z. T. Xia, A complete polarization model of a solid
oxide fuel cell and its sensitivity to the change of cell component thickness,
J. Power Sources, Vol. 93, pp. 130-140, 2001
[26] S. H. Chan, Z. T. Xia, Polarization effects in
electrolyte/electrode-supported solid oxide fuel cells, J. Applied
Electrochemistry, Vol. 32, pp. 339-347, 2002
[27] R. O. Hayre, S. W. Cha, W. Colella, F. B. PrinzJohn, Fuel Cell
Fundamentals, 2nd Ed., John Wiley & Sons, Inc., New York, 2009
[28] A. Leonide, SOFC modeling and parameter identification by means of
impedance spectroscopy, Ph.D. Thesis, Karlsruher Institute fur Technology
(KIT), Germany, 2010
[29] W.G Bessler, Gas concentration impedance of solid oxide fuel cell anodes I.
Stagnation point flow geometry, J. The Electrochemical Society, Vol. 153,
pp. A1492-A1504, 2006
[30] W. G. Bessler, S. Gewies, Gas concentration impedance of solid oxide fuel
cell anodes II. Channel geometry, J. The Electrochemical Society, Vol. 154,
pp. B548-B559, 2007
[31] J. Millichamp, T. J. Mason, N. P. Brandon, R. J.C. Brown, R. C. Maher, G.
Manos, T. P. Neville, D. J. L. Brett, A study of carbon deposition on solid
oxide fuel cell anodes using electrochemical impedance spectroscopy in
combination with a high temperature crystal microbalance, J. Power
Sources, Vol. 235, pp. 14-19, 2013
[32] B. Huang, X. F. Ye, S. R. Wang, H. W. Nie, J. Shi, Q. Hu, J. Q. Qian, X. F.
Sun, T. L. Wen, Performance of Ni/ScSZ cermet anode modified by coating
with Gd0.2Ce0.8O2 for an SOFC running on methane fuel, J. Power Sources,
Vol. 162, pp. 1172-1181, 2006
[33] J. H. Koh, Y. S. Yoo, J. W. Park and H.C. Lim, Carbon deposition and cell
performance of Ni-YSZ anode support SOFC with methane fuel, Solid
State Ionics, Vol. 149, pp. 157-166, 2002
[34] A. Singh and J. M. Hill, Carbon tolerance, electrochemical performance
and stability of solid oxide fuel cells with Ni/yttria stabilized zirconia
anodes impregnated with Sn and operated with methane, J. Power Sources,
Vol. 214, pp. 185-194, 2012
[35] M. A. Buccheri, A. Singh, J. M. Hill, Anode- versus electrolyte-supported
Ni-YSZ/YSZ/Pt SOFCs: Effect of cell design on OCV, performance and
carbon formation for the direct utilization of dry methane, J. Power Sources,Vol. 196, pp. 968-976, 2011
[36] C. A. Lozano, M. Ohashi, S. Shimpalee, J. W. Van Zee, and P.
Aungkavattana, Comdrogen and Methane as fuel in Micro-Tubular SOFC
using Elecparison of Hytrochemical Analysis, J. The Electrochemical
Society, Vol. 158(10), pp. B1235-B1245, 2011
[37] H. Miao, W. G. Wang, T. S. Li, T. Chen, S. S. Sun and Cheng Xu, Effects of
coal syngas major compositions on Ni/YSZ anode-supported solid oxide
fuel cells, J. Power Sources, Vol. 195, pp. 2230-2235, 2010
[38] A. Lanzini, P. Leone, C. Guerra, F. Smeacetto, N.P. Brandon, M. Santarelli,
Durability of anode supported Solid Oxides Fuel Cells (SOFC) under direct
dry-reforming of methane, Chemical Engineering Journal, Vol. 220, pp.
254-263, 2013
[39] T. Matsui, T. Iida, M. Kawano, T. Inagaki, R. Kikuchi and K. Eguchi,
Behavior of Carbon Deposition on Fuel Electrode and Subsequent
Deterioration of Cell Performance During Internal Reforming Operation of
SOFCs, ECS Transactions, Vol. 7(1), pp. 1437-1445, 2007
[40] Y. Lin, Zh. Zhan, Ji. Liu, S. A. Barnett, Direct operation of solid oxide fuel
cells with methane fuel, Solid State Ionics, Vol. 176, pp. 1827-1835, 2005
[41] K. Girona, J. Laurencin, J. Fouletierc. Lefebvre-Joudb, Carbon deposition
in CH4/CO2 operated SOFC: Simulation and experimentation studies, J.
Power Sources, Vol. 210, pp. 381-391, 2012
[42] V.A.C. Haanappel, M.J. Smith, A review of standardising SOFC
measurement and quality assurance at FZJ, J. Power Sources, Vol. 171, pp.
169-178, 2007
[43] J. Liu, S. A. Barnett, Operation of anode-supported solid oxide fuel cells on
methane and natural gas, Solid State Ionics, Vol. 158, pp. 11-16, 2003
指導教授 施聖洋(Shenqyang (Steven) Shy) 審核日期 2014-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明