參考文獻 |
1. Nikolaos Konstantinou Karadimitriou..2013
2. Armstrong, R.T. and D. Wildenschild, Investigating the pore-scale mechanisms of microbial enhanced oil recovery. Journal of Petroleum Science and Engineering, 2012. 94-95: p. 155-164.
3. Liu, K. and Z.H. Fan, Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst, 2011. 136(7): p. 1288-97.
4. Kang-Yi Lien, W.-Y.L., . 2008.
5. Neethirajan, S., et al., Microfluidics for food, agriculture and biosystems industries. Lab Chip, 2011. 11(9): p. 1574-86.
6. M. Heckele, W.B., K.D. Mu¨ ller, . 1998.
7. Lutz, S., et al., Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip, 2010. 10(7): p. 887-93.
8. Kricka, L.J., et al., Fabrication of plastic microchips by hot embossing. Lab Chip, 2002. 2(1): p. 1-4.
9. Becker, H.G., C., Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem, 2008. 390(1): p. 89-111.
10. Becker, H. and C. Gartner, Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 2008. 390(1): p. 89-111.
11. Worgull, M., et al., Hot embossing of microstructures: characterization of friction during demolding. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2008. 14(6): p. 767-773.
12. Hsu, T.R., Packaging design of microsystems and meso-scale devices. Ieee Transactions on Advanced Packaging, 2000. 23(4): p. 596-601.
13. Liu, C., Recent developments in polymer MEMS. Advanced Materials, 2007. 19(22): p. 3783-3790.
14. Becker, H. and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators a-Physical, 2000. 83(1-3): p. 130-135.
15. Liu, J.S., et al., Electrostatic bonding of a silicon master to a glass wafer for plastic microchannel fabrication. Journal of Materials Processing Technology, 2006. 178(1-3): p. 278-282.
16. Koesdjojo, M.T., Y.H. Tennico, and V.T. Reincho, Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer. Analytical Chemistry, 2008. 80(7): p. 2311-2318.
17. Steigert, J., et al., Rapid prototyping of microfluidic chips in COC. Journal of Micromechanics and Microengineering, 2007. 17(2): p. 333-341.
18. Li, J.M., et al., Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip. Journal of Micromechanics and Microengineering, 2008. 18(1): p. 015008.
19. Li, J., et al., Fabrication of a thermoplastic multilayer microfluidic chip. Journal of Materials Processing Technology, 2012. 212(11): p. 2315-2320.
20. Kolew, A., et al., Hot embossing of thermoplastic multilayered stacks. Microsystem Technologies, 2012. 18(11): p. 1857-1861.
21. ), M.Y.C. and P.F. , Glass bead micromodel study of solute transport. 1999.
22. Cheng, J.T. and N. Giordano, Fluid flow through nanometer-scale channels. Physical Review E, 2002. 65(3).
23. <多相流於孔隙介質中主要流動機制之微模型實驗與研究.pdf>.
24. Dong, M., Q. Liu, and A. Li, Displacement mechanisms of enhanced heavy oil recovery by alkaline flooding in a micromodel. Particuology, 2012. 10(3): p. 298-305.
25. Mohammadi, S., M. Hossein Ghazanfari, and M. Masihi, A pore-level screening study on miscible/immiscible displacements in heterogeneous models. Journal of Petroleum Science and Engineering, 2013. 110: p. 40-54.
26. Worgull, M., et al., Hot embossing of high performance polymers. Microsystem Technologies, 2010. 17(4): p. 585-592.
27. 莊朝印, 邱., 聚烯烴彈性體於結晶/非結晶摻合體影響效應之研究. 2008.
28. Worgull, M., et al., Hot embossing of microstructures: characterization of friction during demolding. Microsystem Technologies, 2008. 14(6): p. 767-773.
29. Sahli, M., et al., Experimental analysis and numerical modelling of the forming process of polypropylene replicas of micro-cavities using hot embossing. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2009. 15(6): p. 827-835.
30. Li, J.M., et al., Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip. Journal of Micromechanics and Microengineering, 2008. 18(1): p. -.
31. Heckele, M. and W.K. Schomburg, Review on micro molding of thermoplastic polymers. Journal of Micromechanics and Microengineering, 2004. 14(3): p. R1-R14.
32. Yi, L., X.D. Wang, and Y. Fan, Microfluidic chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip. Journal of Materials Processing Technology, 2008. 208(1-3): p. 63-69.
33. Jena, R.K., C.Y. Yue, and Y.C. Lam, Micro fabrication of cyclic olefin copolymer (COC) based microfluidic devices. Microsystem Technologies, 2011. 18(2): p. 159-166.
34. Dirckx, M.E. and D.E. Hardt, Analysis and characterization of demolding of hot embossed polymer microstructures. Journal of Micromechanics and Microengineering, 2011. 21(8): p. 085024.
35. Tsao, C.-W. and D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluidics and Nanofluidics, 2008. 6(1): p. 1-16.
36. Mair, D.A., et al., Injection molded microfluidic chips featuring integrated interconnects. Lab Chip, 2006. 6(10): p. 1346-54.
37. Tsao, C.-W., J. Liu, and D.L. DeVoe, Droplet formation from hydrodynamically coupled capillaries for parallel microfluidic contact spotting. Journal of Micromechanics and Microengineering, 2008. 18(2): p. 025013.
38. Saad Aly, M.A., et al., Antibacterial porous polymeric monolith columns with amphiphilic and polycationic character on cross-linked PMMA substrates for cell lysis applications. RSC Advances, 2013. 3(46): p. 24177.
39. Jokinen, V., P. Suvanto, and S. Franssila, Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics, 2012. 6(1): p. 16501-1650110.
40. Tsougeni, K., et al., Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir, 2009. 25(19): p. 11748-59.
41. Roy, S., C.Y. Yue, and Y.C. Lam, Influence of plasma surface treatment on thermal bonding and flow behavior in Cyclic Olefin Copolymer (COC) based microfluidic devices. Vacuum, 2011. 85(12): p. 1102-1104.
42. Lee, N.Y. and Y.S. Kim, A simple imprint method for multi-tiered polymer nanopatterning on large flexible substrates employing a flexible mold and hemispherical PDMS elastomer. Macromolecular Rapid Communications, 2007. 28(20): p. 1995-2000. |