博碩士論文 993203036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.116.89.8
姓名 張仲堯(ZHONG-YAO ZHANG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用熱壓製造類多孔隙介質之 微流道模型研究
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 單晶矽材料電化學放電鑽孔及同軸電度之研究
★ 微流道中液滴成形及滴落現象之模擬分析★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究
★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用★ 應用磁性粒子於微流體裝置之可逆接合
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 自然界有許多現象無法被直接觀測,例如岩層孔隙內蘊涵的原油透過強化注水增加採油效率時的微觀動態變化。微模型的應用使得許多流體的現象得以被直接觀測,而傳統用於研究兩相流的微模型多以玻璃為主,利用蝕刻的方式製造流道,這種微模型受限於製造方式而缺乏尺度設計彈性;此外也有利用聚二甲基矽氧烷(PDMS)製作微流道模型,但其易被浸潤及易變形的特性使其不適合做流體觀測。
本研究利用在生醫領域已廣泛利用的微流體晶片技術,先以微影的方式在光滑的矽基材上製作微模型的母模,再透過熱壓印及熱接合方法,製作以環烯烴共聚物(COC)為基材的微流體模型,具有高透明、高剛性、耐酸鹼醇酮、吸水率極低等特性,配合流量控制的針管儀器及觀測設備組成兩相流觀測系統,可進行流體現象的實驗及分析。
本實驗所製作的微流體模型兼具設計上的彈性、精準的尺度,以及低成本、低複雜度,非常適合實驗室使用,此外更由於基材可進一步加工改質或鍍膜,具有更多應用的方向,所以未來發展極具潛力。
摘要(英) There are many phenomena in nature that we cannot observed directly, such as the microscopic dynamics change within the rock pores when increase the water flooding rate. Applied Micro models make a lot of fluid phenomena to be observed directly. Traditional micro-models made of glass, and the channels manufactured by etching way. The models were limited by the lack of design flexibility. Other kinds of micro models such as Polydimethylsiloxane (PDMS) microfluidic models were not suitable for observation because of its easily infiltration and deformation.
In this study, we use the microfluidic chip technology which has been widely used in biomedical field to manufacture the micro model. First, we made the master mold by lithography on smooth silicon substrate, and then made micro model by hot embossing and thermal bonding method. Cyclic olefin copolymer (COC) was the substrate for the model because of excellent chemical and mechanical properties. The model connected steel needles and observation equipment to experiment with controlled flow.
Micro model in this experiment were designing flexibility, precision scales, low cost, low complexity, very suitable for laboratory using. More applications direction due to the substrate modified or coated, showing great potential for future development.
關鍵字(中) ★ 微流道
★ 熱壓製程
關鍵字(英)
論文目次 目錄
中文摘要 i
Abstract ii
誌謝 iii
圖目錄 vi
第一章 緒論 x
1.1前言 1
1.2激勵採油法 (enhanced oil recovery, EOR) 3
1.3熱塑微流體晶片製造技術 7
1.4文獻回顧 11
1.5 研究動機與目的 23
1.6 論文架構 24
第二章 微熱壓印製程與技術 25
2.1 材料的選擇與預處理 25
2.2 加熱與加壓製程 30
2.3 脫模以及接合 34
2.4多孔矽材料層製備 37
2.5氧電漿親水性改質 40
第三章 實驗器材與步驟 43
3.1實驗器材 43
3.2實驗步驟 43
3.2.1流道設計 43
3.2.2母模製備: 微影製程製作矽晶圓母模步驟 44
3.2.3 基材前處理: 49
3.2.4 熱壓製程 : 50
3.2.5. 接合製程: 52
3.2.6後續處理及測試 54
第四章 實驗結果與討論 56
第五章 結論與建議 75
參考文獻 79
參考文獻 1. Nikolaos Konstantinou Karadimitriou..2013

2. Armstrong, R.T. and D. Wildenschild, Investigating the pore-scale mechanisms of microbial enhanced oil recovery. Journal of Petroleum Science and Engineering, 2012. 94-95: p. 155-164.

3. Liu, K. and Z.H. Fan, Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst, 2011. 136(7): p. 1288-97.

4. Kang-Yi Lien, W.-Y.L., . 2008.

5. Neethirajan, S., et al., Microfluidics for food, agriculture and biosystems industries. Lab Chip, 2011. 11(9): p. 1574-86.

6. M. Heckele, W.B., K.D. Mu¨ ller, . 1998.
7. Lutz, S., et al., Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip, 2010. 10(7): p. 887-93.

8. Kricka, L.J., et al., Fabrication of plastic microchips by hot embossing. Lab Chip, 2002. 2(1): p. 1-4.

9. Becker, H.G., C., Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem, 2008. 390(1): p. 89-111.

10. Becker, H. and C. Gartner, Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 2008. 390(1): p. 89-111.

11. Worgull, M., et al., Hot embossing of microstructures: characterization of friction during demolding. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2008. 14(6): p. 767-773.

12. Hsu, T.R., Packaging design of microsystems and meso-scale devices. Ieee Transactions on Advanced Packaging, 2000. 23(4): p. 596-601.

13. Liu, C., Recent developments in polymer MEMS. Advanced Materials, 2007. 19(22): p. 3783-3790.

14. Becker, H. and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators a-Physical, 2000. 83(1-3): p. 130-135.

15. Liu, J.S., et al., Electrostatic bonding of a silicon master to a glass wafer for plastic microchannel fabrication. Journal of Materials Processing Technology, 2006. 178(1-3): p. 278-282.

16. Koesdjojo, M.T., Y.H. Tennico, and V.T. Reincho, Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer. Analytical Chemistry, 2008. 80(7): p. 2311-2318.

17. Steigert, J., et al., Rapid prototyping of microfluidic chips in COC. Journal of Micromechanics and Microengineering, 2007. 17(2): p. 333-341.

18. Li, J.M., et al., Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip. Journal of Micromechanics and Microengineering, 2008. 18(1): p. 015008.

19. Li, J., et al., Fabrication of a thermoplastic multilayer microfluidic chip. Journal of Materials Processing Technology, 2012. 212(11): p. 2315-2320.

20. Kolew, A., et al., Hot embossing of thermoplastic multilayered stacks. Microsystem Technologies, 2012. 18(11): p. 1857-1861.

21. ), M.Y.C. and P.F. , Glass bead micromodel study of solute transport. 1999.

22. Cheng, J.T. and N. Giordano, Fluid flow through nanometer-scale channels. Physical Review E, 2002. 65(3).

23. <多相流於孔隙介質中主要流動機制之微模型實驗與研究.pdf>.

24. Dong, M., Q. Liu, and A. Li, Displacement mechanisms of enhanced heavy oil recovery by alkaline flooding in a micromodel. Particuology, 2012. 10(3): p. 298-305.

25. Mohammadi, S., M. Hossein Ghazanfari, and M. Masihi, A pore-level screening study on miscible/immiscible displacements in heterogeneous models. Journal of Petroleum Science and Engineering, 2013. 110: p. 40-54.

26. Worgull, M., et al., Hot embossing of high performance polymers. Microsystem Technologies, 2010. 17(4): p. 585-592.

27. 莊朝印, 邱., 聚烯烴彈性體於結晶/非結晶摻合體影響效應之研究. 2008.

28. Worgull, M., et al., Hot embossing of microstructures: characterization of friction during demolding. Microsystem Technologies, 2008. 14(6): p. 767-773.

29. Sahli, M., et al., Experimental analysis and numerical modelling of the forming process of polypropylene replicas of micro-cavities using hot embossing. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2009. 15(6): p. 827-835.

30. Li, J.M., et al., Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip. Journal of Micromechanics and Microengineering, 2008. 18(1): p. -.

31. Heckele, M. and W.K. Schomburg, Review on micro molding of thermoplastic polymers. Journal of Micromechanics and Microengineering, 2004. 14(3): p. R1-R14.

32. Yi, L., X.D. Wang, and Y. Fan, Microfluidic chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip. Journal of Materials Processing Technology, 2008. 208(1-3): p. 63-69.

33. Jena, R.K., C.Y. Yue, and Y.C. Lam, Micro fabrication of cyclic olefin copolymer (COC) based microfluidic devices. Microsystem Technologies, 2011. 18(2): p. 159-166.

34. Dirckx, M.E. and D.E. Hardt, Analysis and characterization of demolding of hot embossed polymer microstructures. Journal of Micromechanics and Microengineering, 2011. 21(8): p. 085024.

35. Tsao, C.-W. and D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluidics and Nanofluidics, 2008. 6(1): p. 1-16.

36. Mair, D.A., et al., Injection molded microfluidic chips featuring integrated interconnects. Lab Chip, 2006. 6(10): p. 1346-54.

37. Tsao, C.-W., J. Liu, and D.L. DeVoe, Droplet formation from hydrodynamically coupled capillaries for parallel microfluidic contact spotting. Journal of Micromechanics and Microengineering, 2008. 18(2): p. 025013.

38. Saad Aly, M.A., et al., Antibacterial porous polymeric monolith columns with amphiphilic and polycationic character on cross-linked PMMA substrates for cell lysis applications. RSC Advances, 2013. 3(46): p. 24177.

39. Jokinen, V., P. Suvanto, and S. Franssila, Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics, 2012. 6(1): p. 16501-1650110.

40. Tsougeni, K., et al., Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir, 2009. 25(19): p. 11748-59.

41. Roy, S., C.Y. Yue, and Y.C. Lam, Influence of plasma surface treatment on thermal bonding and flow behavior in Cyclic Olefin Copolymer (COC) based microfluidic devices. Vacuum, 2011. 85(12): p. 1102-1104.

42. Lee, N.Y. and Y.S. Kim, A simple imprint method for multi-tiered polymer nanopatterning on large flexible substrates employing a flexible mold and hemispherical PDMS elastomer. Macromolecular Rapid Communications, 2007. 28(20): p. 1995-2000.
指導教授 曹嘉文(Chia-Wen Tsao) 審核日期 2014-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明