博碩士論文 101356008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:52.15.231.106
姓名 黃伯雄(Po-hsiung Huang)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 UASB串聯活性污泥提升氨基甲酸鹽類農藥原體廢水處理成效之探討
(Combined UASB-Activated Sludge Reactor System Treated Enhance Explore Carbamate Pesticide Wastewater)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 綜觀國內氨基甲酸鹽類農藥製造過程常添加有機性化學物質,所以製程綜合廢水及委外清運廢水中常含有甲苯、甲醇、異丙醇、碳酸鈉及微量毒性物質等有機性化學物質,兩股廢水差異在各種有機性化學物質所含濃度高低不同,而且值得注意的是氨基甲酸鹽類農藥製造廠廢水,大部分都以化學混凝及好氧活性污泥處理方法,其處理成效較不盡理想。本研究利用上流式厭氧污泥床(UASB)串聯活性污泥(AS)模組,實廠處理氨基甲酸鹽農藥廢水,在控制相關操作參數下啟動運轉,探討模組去除COD之成效。
研究利用果糖食品業處理廢水程序中厭氧污泥以及肥皂化工業活性污泥分別馴養,UASB反應器污泥植種開始啟動主要操作參數為,廢水進流流量:4 ml/min、廢水迴流流量:4 ml/min、水力停留時間:150hr、進流廢水COD負荷:507 mg/L、pH:7.2、溫度:26~29℃、MLSS:34,300 mg/L,活性污泥法污泥植種開始啟動主要操作參數為:廢水進流流量:4 ml/min、水力停留時間:150hr、DO:2~3 mg/L、溫度:25~28℃、MLSS:2,280 mg/L。以製程綜合廢水不同COD級距提升進流COD負荷,至8,430 mg/L時,整套模組平均出流水COD值為52 mg/L,COD去除率為99.4%,可維持較佳之COD去除效率,並且符合環保署公告之放流水排放標準100 mg/L以下法規面的要求。依統計實廠廢水排放COD濃度平均範圍值為1,000~8,000 mg/L,由此可以證明此方法有足夠的能力,去處理氨基甲酸鹽農藥製程綜合廢水。
委外清運廢水進流COD負荷範圍為560~2,790 mg/L,整套模組平均出流水COD值為269 mg/L,COD去除率為81%,因無法符合環保署公告之放流水排放標準100 mg/L以下法規面的要求,所以目前只能維持原委外清運方式處理。依統計實廠廢水委外清運COD濃度平均範圍值為50,000~150,000 mg/L,由此可以證明此方法無足夠的能力,去處理氨基甲酸鹽農藥委外清運廢水。
摘要(英) Looking at the domestic carbamate pesticide manufacturing process often add organic chemicals, Therefore, the outsourcing process wastewater and removal comprehensive wastewater often contain toluene, methanol, isopropyl alcohol, sodium carbonate and trace toxic substances . Two stocks differences wastewater with a variety of organic chemicals contained in the high and low concentration, mostly treated by chemical coagulation and aerobic activated sludge treatment method compared the effectiveness of different treatment ideal. In this study, upflow anaerobic sludge blanket (UASB) in series with activated sludge (AS) module, real carbamate pesticide plant wastewater treatment, start running under the control of the relevant operating parameters, to explore the effectiveness of COD removal of the module.
Research on the use of fructose in food industry wastewater treatment process of anaerobic sludge and chemical sludge soap were domesticated. UASB reactor sludge started planting seed main operating parameters of wastewater into the stream flow: 4 ml / min, the flow of wastewater reflux : 4 ml / min, hydraulic retention time: 150hr, into the flow of wastewater COD load: 507 mg / L, pH: 7.2, temperature: 26 ~ 29 ℃, MLSS: 34,300 mg / L. The activated sludge began planting seed start main operating parameters are: wastewater into the stream flow: 4 ml / min, hydraulic retention time: 150hr, DO: 2 ~ 3 mg / L, temperature: 25 ~ 28 ℃, MLSS: 2,280 mg / L. Integrated with process wastewater from a different level to improve the inflow COD COD load to 8,430 mg / L, the set of modules average effluent COD is 52 mg / L, COD removal efficiency of 99.4% can be maintained for better removal efficiency of COD, and comply with effluent discharge standards EPA announced 100 mg / L or less regulation surface requirements. By statistical real plant wastewater COD concentration average range is 1,000 ~ 8,000 mg / L, this method can prove there is sufficient capacity to handle carbamate pesticide comprehensive process wastewater.
Outsourcing COD removal of wastewater into the stream load range of 560 ~ 2,790 mg / L, the entire module average effluent COD value of 269 mg / L, COD removal efficiency of 81%, due to inability to meet effluent discharge standards EPA announcement 100 mg / L or less face regulatory requirements, so the whole story can only be maintained outside the current removal manner. By outsourcing statistics real plant wastewater COD removal average concentration range is 50,000 ~ 150,000 mg / L, can prove that this method is not sufficient capacity to handle the outsourcing carbamate pesticide waste removal.
關鍵字(中) ★ 氨基甲酸鹽農藥廢水
★ 製程綜合廢水
★ 委外清運廢水
★ 上流式厭氧污泥床
★ 活性污泥
關鍵字(英)
論文目次 目錄……………………………………………………………………………............. I
圖目錄…………………………………………………………………………............. IV
表目錄…………………………………………………………………………............. VI
第一章 前言……………………………………………………………....................... 1
1-1 研究緣起………………………………………………………………... 1
1-2 研究目的………………………………………………………………... 2
第二章 文獻回顧……………………………………………………………………... 3
2-1 農藥原體製造業歷史及現況…………….…………………………….. 3
2-2 農藥原體製程廢水之處理方法……………………………………...... 6
2-3 氨基甲酸鹽類農藥製程…………………………………….................. 8
2-4 氨基甲酸鹽類製程廢水來源及特性…………………………………... 11
2-5 UASB 反應器概述…………………………………………….............. 12
2-5-1 UASB 反應器之設計規範……………………………............. 14
2-5-2 UASB 反應器之影響因子……………………......................... 16
2-5-3 UASB 反應器之應用…………………………………………. 20
2-5-4 UASB 反應器之優點…..……………………………………… 26
2-6 活性污泥系統………………………...……………………………….. 27
2-6-1 活性污泥之發展……………………………………………….. 27
II
2-6-2 活性污泥系統處理性能之影響因子…………………………. 29
2-6-3 活性污泥之生物組成………………………………………….. 31
2-6-4 活性污泥之化學組成………………………………………….. 32
第三章 實驗設備與方法…………………………………………………………….. 34
3-1 研究架構與流程….……………………………………......................... 34
3-2 實驗設備與藥品….…………………………………….......................... 35
3-2-1 UASB 串聯活性污泥模組…………………………………….. 36
3-2-2 儀器設備……………………………………………………….. 39
3-2-3 藥品種類….……………………………………........................ 40
3-3 實驗方法….…………………………………….................................... 42
3-3-1 實驗廢水之配製….…………………........................................ 42
3-3-2 UASB 反應器與活性污泥之植種….……………………........ 42
3-3-3 UASB 反應器之實驗操作….…………………………............ 42
3-3-4 實驗分析方法….……………………………………................ 44
第四章 結果與討論………………………………………………………………....... 46
4-1 UASB 反應器甲烷產生菌之生長影響因子…………………….......... 47
4-1-1 pH 值……………………………..……………………………. 47
4-1-2 水力停留時間……………………………................................ 49
4-1-3 溫度….……………………………………............................... 50
4-1-4 有機負荷率….……………………………………................... 51
4-2 UASB 反應器對含氨基甲酸鹽類廢水之處理效能………………...... 52
4-2-1 製程綜合廢水之處理效能…………………………………….. 53
III
4-2-2 委外清運廢水之處理效能…………………………………….. 59
4-3 UASB反應器串聯活性污泥法處理氨基甲酸鹽類廢水之處理效能… 64
4-3-1 製程綜合廢水之處理效能….………………………................ 65
4-3-2 委外清運廢水之處理效能….………………………................ 72
4-4 影響最佳處理效能之其他因子….…………………………….............. 76
4-4-1 溶氧….……………………………………............................... 76
4-4-2 毒性物質….……………………………………........................ 77
4-5 處理效率與成本效益分析…... ….……………………….................... 78
第五章 結論與建議.………………………………………………………………...... 82
5-1 結論……………………………………………………………………... 82
5-2 建議……………………………………………………………………... 83
參考文獻………………………………………………………………………............. 85
參考文獻 1.Arceivala, S.J. 1995. Experiences with UASB for sewage treatment in India. 22:90–4.
2.Azbar, N., Dokgoz, F.T., Keskin, T., Eltem, R., Korkmaz, K.S., Gezgin, Y., Akbal, Z., Oncel, S., Dalay, M.C., Gonen, C., Tutuk, F. 2009. Comparative Evaluation of Bio-Hydrogen Production From Cheese Whey Wastewater Under Thermophilic and Mesophilic Anaerobic Conditions. International Journal of Green Energy, 6(2), 192-200.
3.Bodik, I., Herdova, B., Drtil, M. 2000. Anaerobic treatment of the municipal wastewater under psychrophilic conditions. Bioprocess Engineering, 22(5), 385-390.
4.Campos, C.M.M., Anderson, G.K. 1992. The Effect of the Liquid Upflow Velocity and the Substrate Concentration on the Start-up and Steady-State Periods of Lab-Scale Uasb Reactors. Water Science and Technology, 25(7), 41-50.
5.Collins, C.E., Incropera, F.P., Grady, C.P.L. 1978. Effect of Temperature Control on Biological Wastewater-Treatment Processes. Water Research, 12(8), 547-554.
6.Cooke, W.B., Pipes, W.O. 1970. Occurrence of Fungi in Activated Sludge. Mycopathologia Et Mycologia Applicata, 40(3-4), 249-270.
7.Curds, C.R., Cockburn, A. 1970. Protozoa in Biological Sewage-Treatment Processes .1. A Survey of Protozoan Fauna of British Percolating Filters and Activated-Sludge Plants. Water Research, 4(3), 225-228.
8.Draaijer, H., Maas, J.A.W., Schaapman, J.E., Khan, A. 1992. Performance of the 5 MLd Uasb Reactor for Sewage-Treatment at Kanpur, India. Water Science and Technology, 25(7), 123-133.
9.Eckenfelder, W.W. 1988. Industrial water pollution control. MaGraw-Hill, New York.
10.Edeline, F. 1993. L′Epuration biologique des eaux : théorie et technologie des réacteurs. 4th ed. Tec et Doc.
11.Gaudy, A.F. 1980. Microbiology for environment scientistic and engineers. McGraw-Hill, New York.
12.Goncalves, R.F., de Araujo, V.L., Chernicharo, C.A.L. 1998. Association of a UASB reactor and a submerged aerated biofilter for domestic sewage treatment. Water Science and Technology, 38(8-9), 189-195.
13.Grady, C.P.L., Daigger, G.T., Kim, H.C. 1999. Biological wastewater treatment. 2nd ed. Marcel Dekker, New York.
指導教授 李俊福 審核日期 2014-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明