博碩士論文 101325603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:137 、訪客IP:3.129.211.116
姓名 吳怡柔(Irma Wahyuni)  查詢紙本館藏   畢業系所 營建管理研究所
論文名稱 綠屋頂對於建築物節能之模擬研究-以台灣建築物為例
(The effect of eco-roof in reducing energy consumption: case study of building in Taiwan)
相關論文
★ 台灣太陽能光電系統故障原因調查與安裝施工檢查表製作之研究★ 生命週期導向橋梁改善策略最佳化評選模式之研究
★ 國內建築廢棄物減量措施之分析探討及其成效評估之研究★ 應用賽局理論分析高科技廠房工程競爭行為之研究
★ 橋梁維護管理生命週期成本評估模式之研究★ 營建剩餘土石方及混合物處理與再利用法制化之研究
★ 建築工程產生廢棄物數量推估之研究★ 橋梁生命週期成本評估-構件劣化預測模式之研究
★ 國道預力混凝土橋與鋼橋生命週期成本評估個案之研究★ 單一建築物拆除工程混合物產生量推估之研究
★ 裝修工程廢棄物回收站與再利用廠設置最佳化區位評選之研究★ 精簡營建應用於鋼構工程供應鏈之研究
★ 營建剩餘土石方評估指標建立及成效提升之研究★ 建築廢棄物收容處理場所設置最佳區位評選之研究
★ 營建再生料源資訊交換網建置之研究★ 運用資料探勘技術於臺灣鋼筋混凝土橋梁構件劣化因子之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於台灣城市快速發展,不透水之鋪面與高大建築群,已取代原有之森林與農田,自然環境已遭受破壞。因此,在不變的發展狀態下,提出改善整體環境之對策,應受到各方之重視。回顧文獻與案例可發現,綠屋頂係為設置在建築屋頂常見的綠色工法之一,透過鋪設土壤與多元之植栽環境將可創造可觀之生態效益和經濟效益,如減輕城市熱島效應、控制雨水逕流、減少噪音反射和傳遞、降低室內溫度加熱和冷卻之能源成本,並維持當地物種之棲地環境,一舉改善整體環境及建築物受熱問題。
本研究主要目的,係分析既有建築進行不同程度之綠屋頂改造後,其能源消耗對建築物長期之影響。本研究利用一11層之住宅與一5層樓之公共建築物進行模擬,並以不同綠屋頂之類型、土壤厚度、植栽種類作為變化參數。分析模擬結果可發現,不同土壤厚度並不影響建築物能源之消耗,反而間接影響了植栽種類之選擇。換句話說,大型植栽需要厚度較厚之土層;而集中設置的薄土層,可比分散之土層或原屋頂提供更佳的隔絕效果;植栽種類之選擇與綠屋頂之覆蓋率是降低建築物能源消耗之關鍵。本研究所模擬的之公共建築物成果顯示,綠屋頂之設置將可減少24~36%之能源消耗;而住宅則可減少6~11%的能源消耗。
摘要(英) Eco-roof is green construction structure consisting of medium soil and plants on top of a building. This research is motivated by the fact that forests and agricultural lands are replaced with impervious surfaces due to urban development in Taiwan, the countermeasures of the green-act should be done soon in order to preserve the health of the environment. Eco-roof technology is one of the appropriate response to cope with this issue. Establishing plant material on rooftops provide numerous ecological and economic benefits including mitigate urban heat island effect, control storm water run-off, reduce sound reflection and transmission, and lower heating and cooling costs, as well as sustain local wildlife. The main objective of this research is to model the influence of eco-roof retrofitting in term of annual energy reduction for a whole building in Taiwan through case study. The method use in this thesis involve whole building simulation model for residential and institutional building. Different type of eco-roof, soil thickness and distinct section assignment of the plant on the roof are parameters used for this research. Results show that different thickness do not directly affect annual energy consumption in the building but more likely has an indirect effect to energy reduction in relation to plants’ selection, in the other word, the larger types of plants the ticker soil need to be applied. Intensive type with the thinner soil layer gives better insulation compare to extensive and even for bare roof. Plants selection and eco-roof coverage design are the biggest factors to lower energy consumption, in this study cases for 5-storey institutional building could reduce energy as much as 24-36% and for 11-storey residential building decrease energy demand around 6-11%.
關鍵字(中) ★ 綠屋頂
★ 能源消耗
關鍵字(英) ★ eco-roof
★ energy consumption
★ whole building simulation
論文目次 TABLE OF CONTENT

ABSTRACT i
摘要 ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENT iv
LIST OF FIGURES vi
LIST OF TABLES vii
CHAPTER 1: INTRODUCTION 1
1.1 Background 1
1.2 Problem statement and objective of the study 2
1.3 Scope of research and limitation 3
1.4 Methodology 3
1.5 Thesis outline 4
CHAPTER 2: LITERATURE REVIEW 6
2.1 Eco-roof development 6
2.2 Eco-roof type, plant and substrate 8
2.3 Eco-roof for retrofitting and energy modelling 10
2.4 Previous studies 12
2.4.1 Study on eco-roof in hot-arid climate 12
2.4.2 Study of eco-roof in highly insulated roof 13
2.4.3 Comparative study approach on energy performance assessment in retrofitting 13
2.5 Tool to analyze thermal performance for whole building simulation 14
CHAPTER 3: MODEL BUILDING OF THE TWO CASE STUDY 17
3.1 Case study building 18
3.2 Simulation input 20
3.2.1 IESVE input 20
3.2.2 Parameter input 23
3.3 Mathematical calculation and analysis 23
3.3.1 Soil evaporative equation 25
3.3.2 Plant transpiration cooling 26
3.4 Validation 27
CHAPTER 4: RESULTS AND DISCUSSIONS 28
4.1 Case study 1: Kwoh-ting building 28
4.1.1 IES simulation result 28
4.1.2 Calculation results 28
4.1.3 Summary for Kwoh-ting building 32
4.2 Case study 2: Faculty residence building 33
4.2.1 IES simulation result 33
4.2.2 Calculation results 34
4.2.3 Summary for faculty residence building 37
4.3 Discussion and findings 38
CHAPTER 5: CONCLUSION AND SUGGESTION 40
5.1 Conclusion 40
5.2 Suggestion 41
REFERENCES 42
APPENDIX 46
參考文獻 1. Chen, C.-F., Performance evaluation and development strategies for green roofs in Taiwan: A review. Ecological Engineering, 2013. 52(0): p. 51-58.

2. Administration, U.S.E.I., International Energy Statistic, 2013, U.S Department of Energy.

3. Bureau of Energy, M., Taiwan Energy Statistic Handbook, M. Bureau of Energy, Editor 2013, Ministry of Economic Affairs: Taiwan.

4. carter, T. and C. butler, Ecological impact of replacing traditional roofs with green roofs in two urban areas. Cities and Environment, 2008. 1(2).

5. Jaffal, I., S.-E. Ouldboukhitine, and R. Belarbi, A comprehensive study of the impact of green roofs on building energy performance. Renewable Energy, 2012. 43(0): p. 157-164.

6. Tobias, L., G. Vavaroutsos, and U.L. Institute, Retrofitting Office Buildings to Be Green and Energy-Efficient: Optimizing Building Performance, Tenant Satisfaction, and Financial Return. 2009: Urban Land Institute.

7. Division, U.S.E.P.A.C.P.P., Reducing Urban Heat Islands: Compendium of Strategies. Cool roofs. 2008: Climate Protection Partnership Division, U.S. Environmental Protection Agency.

8. Cavanaugh, L., Redefining the Green Roof. Journal of Architectural Engineering, 2008. 14(1): p. 4-6.

9. Simcock, R., E. Fassman, and E. Voyde, Stormwater Mitigation by Living Roofs in Auckland, New Zealand, in Low Impact Development 2010. 2010. p. 1406-1416.

10. Wong, N.H., et al., Investigation of thermal benefits of rooftop garden in the tropical environment. Building and Environment, 2003. 38(2): p. 261-270.

11. Cook-Patton, S.C. and T.L. Bauerle, Potential benefits of plant diversity on vegetated roofs: A literature review. Journal of Environmental Management, 2012. 106(0): p. 85-92.

12. Bianchini, F. and K. Hewage, How “green” are the green roofs? Lifecycle analysis of green roof materials. Building and Environment, 2012. 48(0): p. 57-65.

13. Motz, K.B., Study for Improving Energy Conservation of Existing Buildings: Case Study of a Commercial & Residential Building in California, United States, in Environmental Sustainable Development2012, National Central University: National Central University. p. 117.

14. Susca, T., S.R. Gaffin, and G.R. Dell’Osso, Positive effects of vegetation: Urban heat island and green roofs. Environmental Pollution, 2011. 159(8–9): p. 2119-2126.

15. Gregoire, B.G. and J.C. Clausen, Effect of a modular extensive green roof on stormwater runoff and water quality. Ecological Engineering, 2011. 37(6): p. 963-969.

16. Van Renterghem, T. and D. Botteldooren, Numerical evaluation of sound propagating over green roofs. Journal of Sound and Vibration, 2008. 317(3–5): p. 781-799.

17. Kamel, B., et al., Effectiveness of Green-Roof on Reducing Energy Consumption through Simulation Program for a Residential Building: Cairo, Egypt, in Construction Research Congress 2012. p. 1740-1749.

18. Brenneisen, S., Space for Urban Wildlife: Designing Green Roofs as Habitats in Switzerland, in Green Roofs and Biodiversity2006, Urban Habitats.

19. Zhang, X., et al., Barriers to implement extensive green roof systems: A Hong Kong study. Renewable and Sustainable Energy Reviews, 2012. 16(1): p. 314-319.

20. Hui, S.C.M., Benefits And Potential Applications Of Green Roof Systems In Hong Kong, in Proceedings of the 2nd Megacities International Conference 20062006: Guangzhou, China. p. 351-360.

21. Czemiel Berndtsson, J., Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 2010. 36(4): p. 351-360.

22. Johnston, J., J. Newton, and L.E. Unit, Building Green: A Guide to Using Plants on Roofs, Walls and Pavements. 2004: Eco-Logic Books.

23. Blanusa, T., et al., Alternatives to Sedum on green roofs: Can broad leaf perennial plants offer better ‘cooling service’? Building and Environment, 2013. 59(0): p. 99-106.

24. Dunnett, N. and N. Kingsbury, Planting Green Roofs and Living Walls. 2004: Timber Press.

25. Celik, S., S. Morgan, and W.A. Retzlaff. Energy Conservation Analysis of Various Green Roof Systems. in Green Technologies Conference, 2010 IEEE. 2010.

26. Liu, T.C., et al., Drought tolerance and thermal effect measurements for plants suitable for extensive green roof planting in humid subtropical climates. Energy and Buildings, 2012. 47(0): p. 180-188.

27. Parizotto, S. and R. Lamberts, Investigation of green roof thermal performance in temperate climate: A case study of an experimental building in Florianópolis city, Southern Brazil. Energy and Buildings, 2011. 43(7): p. 1712-1722.

28. Scott Melching, J. Resnick, and T. Carleo, A New York Story: Case Study in Green Roof Retrofits, in City Alive 2012 Green Roof and Green Wall Conference2012, Green Roofs for Healthy Cities: New York. p. 16.

29. Castleton, H.F., et al., Green roofs; building energy savings and the potential for retrofit. Energy and Buildings, 2010. 42(10): p. 1582-1591.

30. Selman, P.H., Sustainable Landscape Planning. 2012: Routledge.

31. Wilkinson, S.J. and R. Reed, Green roof retrofit potential in the central business district. Property management, 2009. 27(5): p. 284-301.

32. Getter, K.L., D.B. Rowe, and B.M. Cregg, Solar radiation intensity influences extensive green roof plant communities. Urban Forestry & Urban Greening, 2009. 8(4): p. 269-281.

33. Sailor, D.J., A green roof model for building energy simulation programs. Energy and Buildings, 2008. 40(8): p. 1466-1478.

34. Barrio, E.P.D., Analysis of the green roofs cooling potential in buildings. Energy and Buildings, 1998. 27(2): p. 179-193.

35. He, H. and C.Y. Jim, Simulation of thermodynamic transmission in green roof ecosystem. Ecological Modelling, 2010. 221(24): p. 2949-2958.

36. Alabadla, M., A Study on Reducing Heat Gain through the use of Green Envelope, in Faculty of Engineering2013, The British University in Dubai: Dubai. p. 194.

37. D’Orazio, M., C. Di Perna, and E. Di Giuseppe, Green roof yearly performance: A case study in a highly insulated building under temperate climate. Energy and Buildings, 2012. 55(0): p. 439-451.

38. Wang, S., C. Yan, and F. Xiao, Quantitative energy performance assessment methods for existing buildings. Energy and Buildings, 2012. 55(0): p. 873-888.

39. Attia, S., State of the Art of Existing Early Design Simulation Tools for Net Zero Energy Buildings: A Comparison of Ten Tools, in Architecture et climat2012, Université catholique de Louvain: Belgium. p. 45.

40. Tabares-Velasco, P.C. and J. Srebric, A heat transfer model for assessment of plant based roofing systems in summer conditions. Building and Environment, 2012. 49(0): p. 310-323.

41. Kotsiris, G., et al., An adaptive approach to intensive green roofs in the Mediterranean climatic region. Urban Forestry & Urban Greening, 2013. 12(3): p. 380-392.

42. Berndtsson, J.C., L. Bengtsson, and K. Jinno, Runoff water quality from intensive and extensive vegetated roofs. Ecological Engineering, 2009. 35(3): p. 369-380.

43. Jim, C.Y. and S.W. Tsang, Biophysical properties and thermal performance of an intensive green roof. Building and Environment, 2011. 46(6): p. 1263-1274.

44. ThermExcel, Physical characteristics of water (at the atmospheric pressure), 2003.

45. NOAA, Vapor pressure. National Weather Service Weather Forcast Office., 2009.

46. Pan, Y., Z. Huang, and G. Wu, Calibrated building energy simulation and its application in a high-rise commercial building in Shanghai. Energy and Buildings, 2007. 39(6): p. 651-657.

47. Raftery, P., M. Keane, and A. Costa, Calibrating whole building energy models: Detailed case study using hourly measured data. Energy and Buildings, 2011. 43(12): p. 3666-3679.
指導教授 黃榮堯 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明