博碩士論文 102325602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.142.156.224
姓名 希蘇葳(Ristu Widaya)  查詢紙本館藏   畢業系所 營建管理研究所
論文名稱 建築物雙層牆節能效果評估之研究
(PERFORMANCE EVALUATION OF DOUBLE WALL IN REDUCING BUILDING ENERGY CONSUMPTION)
相關論文
★ 台灣太陽能光電系統故障原因調查與安裝施工檢查表製作之研究★ 生命週期導向橋梁改善策略最佳化評選模式之研究
★ 國內建築廢棄物減量措施之分析探討及其成效評估之研究★ 應用賽局理論分析高科技廠房工程競爭行為之研究
★ 橋梁維護管理生命週期成本評估模式之研究★ 營建剩餘土石方及混合物處理與再利用法制化之研究
★ 建築工程產生廢棄物數量推估之研究★ 橋梁生命週期成本評估-構件劣化預測模式之研究
★ 國道預力混凝土橋與鋼橋生命週期成本評估個案之研究★ 單一建築物拆除工程混合物產生量推估之研究
★ 裝修工程廢棄物回收站與再利用廠設置最佳化區位評選之研究★ 精簡營建應用於鋼構工程供應鏈之研究
★ 營建剩餘土石方評估指標建立及成效提升之研究★ 建築廢棄物收容處理場所設置最佳區位評選之研究
★ 營建再生料源資訊交換網建置之研究★ 運用資料探勘技術於臺灣鋼筋混凝土橋梁構件劣化因子之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,全球暖化與能源浪費之議題已經受到矚目。由於,建築物之使用階段將消耗大量能源,亦造成大量二氧化碳之排放,因此如何減少能源消耗係為管控之關鍵。而隨著建築技術、設計與材料之改善,雙層牆體(Double wall)已是現今常見的建築構件之一。根據相關研究成果指出,妥善規劃雙層牆體,可有效減緩室內溫度變化之程度,達降低溫度及減少冷卻溫度所需之能耗。惟這些研究中仍有不少因素尚未詳加考量,諸如牆體材料、牆體間之空隙,或是設置方位等。有鑑於改善能源消耗之重要性,本研究目的在於探討牆體材料與牆體間之空隙之最佳組合,並分析設置於建築物各方位之影響,以研析降低能源消耗之可能。
本研究運用DesignBuilder軟體中的EnergyPlus模組,進行各項材料與牆體間空隙之模擬。根據模擬成果可發現,若在建築物四周皆設置雙層磚牆,而且保持100mm的空隙,每年將可節省高達31,90% 的能源消耗。模擬內容反應出,雙層牆體之運用需視建築物各側陽光影響變化,有所差異;材料的U值亦直接影響雙層牆體之效能;牆體間之空隙與降低能源消耗成反比成長,而超過100mm以上之空隙,其影響將趨於平緩。
摘要(英) In recent years, global warming and recklessness of the energy has significant attention to be avoided. Building is one of the biggest energy consumer and largest contributors to the increase of CO2. Double wall is one of the building element method which became popular to utilized in recent years. Several studies mentioned this method can be reduced the impact of fluctuative temperature. Although some of the studies have been done to prove that this method can be reduced the air temperature and cooling energy demand, the particular application of double wall with the regularity among materials, air gaps and other parameters such as buildings side orientation are no attention to date. Hence, it may raise the question, which double-wall combination can work as its optimum to reduce cooling energy demand. Based on these background issue, this study aim is to investigate the optimum combination of materials and air gaps of double wall in terms of reducing cooling energy consumption and also to investigate the impact of the buildings side orientation in double wall utilization. In order to determine these result, this study was simulated by using EnergyPlus in DesignBuilder software. The result obtained that double wall utilization with combination between double block and 100mm air gap in all of the building sides was given the significant impact into cooling energy consumption reduction up to 31,90% in a year. Double wall utilization is depending on the buildings side orientation because of the different amount of solar heat gain. U-value of the materials are also affected into the double wall performance. The cooling energy consumption reduction is inversely proportional by the increasing the air gap width. But, by increasing air gap of 100mm width or above is only help the percentage of reduction in smaller amount.
關鍵字(中) ★ 雙層牆體
★ 能源消耗
★ DesignBuilder
關鍵字(英) ★ double wall
★ cooling energy consumption
★ DesignBuilder
論文目次 ABSTRACT .......................................................................................................................... i
摘要....................................................................................................................................... ii
ACKNOWLEDGEMENT .................................................................................................. iii
TABLE OF CONTENT ...................................................................................................... iv
LIST OF FIGURES .......................................................................................................... viii
LIST OF TABLES .............................................................................................................. x
CHAPTER I
INTRODUCTION
1.1 Research Background .......................................................................................... 1
1.2 Reseacrh Objectives ............................................................................................. 3
1.3 Research Scope .................................................................................................... 3
1.4 Research Flowchart .............................................................................................. 4
1.5 Thesis Organization ............................................................................................. 4
CHAPTER 2
STATE OF THE ART
2.1 Introduction of Double Wall ................................................................................ 6
2.1.1 Double Wall Definition and Component ................................................. 6
2.1.2 Double Wall Materials and Thermal Behaviour ...................................... 8
2.1.3 Heat Transfer .......................................................................................... 12
2.1.4 The Difference among Double Wall, Cavity Wall, Double Skin Facade (DSF), Open-Joint Ventilaed Façades (OJVF) and Trombe Wall ......... 14
2.2 Previous Studies Related to Double Wall and Energy Conservation ................ 16
2.2.1 Relationship between Air Temperature and Building Energy Consumption .......................................................................................... 16
2.2.2 The Paremeters Affecting into Ventilated Facade ................................. 16
2.2.3 Study on The Simulation Variants and Calculations for A ‘Standard’ Air Cavity ..................................................................................................... 17
2.2.4 The Effect of Air Cavity Thermal Resistances in Thermal Insulation Performance ........................................................................................... 17
2.2.5 The Impact of Thermal Bridges on The Energy Demand of Buildings with Double Brick Wall Constructions .................................................. 18
2.2.6 Heat Transfer Through A Double-walled Facade .................................. 18
2.2.7 Performance of A Ventilated Wall ......................................................... 18
2.2.8 Solar Heat Gain ...................................................................................... 19
2.3 Tools in Double Wall Performance Evaluation ................................................. 20
CHAPTER 3
SIMULATION MODEL BUILDING
3.1 Building Study Case .......................................................................................... 21
3.2 Simulation Stage in EnergyPlus ........................................................................ 23
3.3 EnergyPlus Simulation Input ............................................................................. 25
3.4 Validation of Building Model ............................................................................ 28
CHAPTER 4
RESULT AND DISCUSSION
4.1 Base Case Simulation ........................................................................................ 31
4.2 Cooling Energy Consumption Reduction in Scenario 1 .................................... 32
4.2.1 Double Concrete Wall with Air Gap Modification ................................ 32
4.2.2 Double Brick Wall with Air Gap Modification ..................................... 33
4.2.3 Double Block Wall with Air Gap Modification .................................... 34
4.2.4 Double Wall Combination between Brick and Block as an Outer and an Inner layer with Air Gap Modification .................................................. 35
4.2.5 Double Wall Combination between Brick and Concrete as an Outer and an Inner layer with Air Gap Modification ............................................. 36

4.2.6 Comparison of Cooling Energy Consumption Reduction in Scenario 1 ..................................................................................................................37
4.3 Cooling Energy Consumption Reduction in Scenario 2 .................................... 38
4.3.1 Double Concrete Wall with Air Gap Modification ................................ 38
4.3.2 Double Brick Wall with Air Gap Modification ..................................... 39
4.3.3 Double Block Wall with Air Gap Modification .................................... 40
4.3.4 Double Wall Combination between Brick and Block as an Outer and an Inner layer with Air Gap Modification .................................................. 41
4.3.5 Double Wall Combination between Brick and Concrete as an Outer and an Inner layer with Air Gap Modification ............................................. 42
4.3.6 Comparison of Cooling Energy Consumption Reduction in Scenario 1 ................................................................................................................. 43
4.4 Cooling Energy Consumption Reduction in Scenario 3 .................................... 44
4.4.1 Double Concrete Wall with Air Gap Modification ................................ 44
4.4.2 Double Brick Wall with Air Gap Modification ..................................... 45
4.4.3 Double Block Wall with Air Gap Modification .................................... 46
4.4.4 Double Wall Combination between Brick and Block as an Outer and an Inner layer with Air Gap Modification .................................................. 47
4.4.5 Double Wall Combination between Brick and Concrete as an Outer and an Inner layer with Air Gap Modification ............................................. 48
4.4.6 Comparison of Cooling Energy Consumption Reduction in Scenario 1 ................................................................................................................. 49
4.5 Cooling Energy Consumption Reduction in Scenario 4 ................................... 50
4.5.1 Double Concrete Wall with Air Gap Modification ................................ 50
4.5.2 Double Brick Wall with Air Gap Modification ..................................... 51
4.5.3 Double Block Wall with Air Gap Modification .................................... 52
4.5.4 Double Wall Combination between Brick and Block as an Outer and an Inner layer with Air Gap Modification .................................................. 53
4.5.5 Double Wall Combination between Brick and Block as an Outer and an Inner layer with Air Gap Modification .................................................. 54
4.5.6 Comparison of Cooling Energy Consumption Reduction in Scenario 1 ................................................................................................................. 55
4.6 Comparison of Cooling Energy Consumption Reduction
from All of The Scenarios ................................................................................. 56
CHAPTER 5
CONCLUSION AND FUTURE RESEARCH
5.1 Conclusion ......................................................................................................... 58
5.2 Future Research ................................................................................................. 59
REFERENCES ................................................................................................................. 60
APPENDIX ....................................................................................................................... 63
參考文獻 [1] Taiwan Green Building Label. On March 2014. http://twgbqanda.com/english/e_earth.php?Type=1&menu=e_earth_class&pic_dir_list=0
[2] Radhi Hassan. 2010. On the Effect of Global Warming and the UAE Built Environment. Faculty of Engineering, UAE.
[3] U.S. International Energy Agency. 2013. Transition to Sustainable Buildings. IEA, Washington, D.C.
[4] http://www.c2es.org/technology/factsheet/BuildingEnvelope
[5] Denzil Nield. 1949. Walls & Wall Facings. London
[6] New Civil Engineer. Oct 3rd, 1991. Single leaf wall with vertical and lateral load. Thomas Telford Ltd. London.
[7] Emmitt S. and A. Gorse C. 2010. Barry′s Introduction to Construction of Buildings. Wiley-Blackwell, John Wiley & Sons Ltd.
[8] Yeomans David. 1997. Construction Since 1900: Materials. London.
[9] UWE Bristol. 2006. External Loadbearing Walls.
[10] Al-Jabri K. S., et all. 2005. Concerete Blocks for Thermal Insulation in Hot Climate. UK: Elsevier.
[11] M.h. de Wit., et all. 2009. Heat Exchange Between Inner and Outer Leaf of A cavity wall.
[12] iPHA (The International Passive House Association). On March 2014. http://passipedia.passiv.de/passipedia_en/planning/thermal_protection/integrated_thermal_protection.
[13] Künzel, H. 1998. Zweischlaiges Mauerwerk–mit Oder Ohne Belüftung?’ (A Double-Wall Masonry with or without Ventilation?). Germany.
[14] Thermal Performance of Buildings. On April 2014. http://mnre.gov.in/solar-energy/ch4.pdf
[15] Coulibaly. O., et all. 2013. Thermal Performances of A Bioclimatic Building in Hot And Dry Tropical Climate. Revue des Energies Renouvelables.
[16] Bekkouche S. M. A., et all. 2013. Thermal Resistances of Air in Cavity Walls and Their Effect upon The Thermal Insulation Performance. International Journal of Energy and Environment.
[17] W. Yagoub, S. Appleton, and W. Stevens. 2010. Case Study of Double Skin Façade in Hot Climates. Presented at the Adapting to Change: New Thinking on Comfort, London,
[18] P. Roelofsen. 2002. Ventilated Facades Climate Facade versus Double-Skin Facade. European Consulting Engineering Network.
[19] Suárez María José., et all. 2012. Energy Evaluation of An Horizontal Open Joint Ventilated Façade. Sciencedirect Applied Thermal Engineering Journal.
[20] Giancola E., et all. 2010. Numerical and Experimental Analysis of An Openjoint Ventilated Façade. SimBuild 2010, 4th National Conference of IBPSA-USA.
[21] Torcellini P. and Pless S. 2004. Trombe Walls in Low-Energy Buildings: Practical Experiences. Congress VIII and Expo Denver, Colorado.
[22] U.S. Environmental Protection Agency (EPA). 2008. Reducing Urban Heat Island: Compendium of Strategies. EPA, Washington, D.C.
[23] Asaeda, Takashi, Vu Thanh Ca. 2000. Characteristics of Permeable Pavement During Hot Summer Weather and Impact on The Thermal Environment. Building and Environment.
[24] Mora Pérez Miguel, et all. 2013. CFD Model of Air Movement in Ventilated Façade: Comparison between Natural and Forced Air Flow. International Journal of Energy and Environment.
[25] Theodosiou T.G. and Papadopoulos A.M. 2008. The Impact of Thermal Bridges on The Energy Demand of Buildings with Double Brick Wall Constructions. UK: Elsevier.
[26] Missoum A., et all. 2011. Numerical Simulation of Heat Transfer through A Double-walled Facade Building in Arid Zone. UK: Elsevier.
[27] Seferis P., et all. 2011. Investigation of The Performance of a Ventilated Wall. UK: Elsevier.
[28] High Performance Commmercial Buildings. On April 2014. www.nrel.gov/docs/fy01osti/30171.pdf
[29] Brick Industry Association. 1981. Technical Notes on Brick Construction - Passive Solar Heating with Brick Masonry. Reprinted with permission from the 1972 ASHRAE Handbook of Fundamentals Volume.
[30] DesignBuilder. 2009. DesignBuilder 2.1 User′s Manual.
指導教授 黃榮堯(Rong-yau Huang) 審核日期 2014-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明