博碩士論文 995301021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.21.46.68
姓名 梁志誠(Chih-cheng Liang)  查詢紙本館藏   畢業系所 電機工程學系在職專班
論文名稱 具智慧型控制之非接觸式鋰錳電池充電器
(Contactless Li-Mn Battery Charger with Intelligent Control)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文提出一只以數位訊號處理器為基礎之非對稱歸屬函數之TSK機率模糊類神經網路控制非接觸式鋰錳電池充電器。此充電器將設計對一鋰錳電池組實現定電流-定電壓混合式充電策略,所提電路架構採用半橋串聯諧振電路。為改進U型鐵芯變壓器有限氣隙距離所造成電磁感應不良及其效率不佳問題,本文改以圓盤型線圈耦合器取代U型鐵芯變壓器。額定功率時,兩圓盤型線圈氣隙間距最大為20公厘,效率可達80%。為了要改善輸出電壓在負載調節及追蹤輸出電流命令變動時的暫態響應,而以非對稱歸屬函數之TSK機率模糊類神經網路控制器取代傳統的比例積分控制器。此外,使用所提出之非對稱歸屬函數之TSK機率模糊類神經網路控制器可改善電池定電流充電轉換為定電壓充電模式後的電流漣波。本文將詳細介紹非對稱歸屬函數之TSK機率模糊類神經網路的架構、線上學習法則以及收斂性分析,而所提之非對稱歸屬函數之TSK機率模糊類神經網路控制器實現對二次電池之定電流-定電壓混合式充電策略的控制性能將由實驗結果驗證。
摘要(英) A digital signal processor (DSP)-based TSK-type probabilistic fuzzy neural network with asymmetric membership function (TSKPFNN-AMF) is proposed in this study to control a contactless battery charger. The half-bridge series resonant converter (SRC) is employed in the power stage while the designed charger adopts constant-current and constant-voltage (CC-CV) charging strategy to charge a Li-Mn battery pack. In order to improve the inferior electromagnetic induction and efficiency of the U-shape ferrite core transformer, the U-shape ferrite core transformer is replaced by the circular pad couplers. As a result, the air gap distance of two circular pads can reach 20mm and the efficiency is 80% at the rated output power. Moreover, to improve the transient of voltage regulation during load variation and the tracking of current command change, a TSKPFNN-AMF controller is proposed to replace the traditional proportional-integral (PI) controller. The proposed TSKPFNN-AMF is incorporated into the CC-CV charging strategy in order to overcome the current ripple that comes after the transition from CC to CV charging. The network structure and the online learning algorithms of the TSKPFNN-AMF controller are introduced in detail. Furthermore, the control performances of the proposed TSKPFNN-AMF control system for CC-CV charging are evaluated by some experimental results.
關鍵字(中) ★ 圓盤型線圈
★ 半橋串聯諧振轉換器
★ 數位訊號處理器
★ 鋰錳電池
★ 定電流充電
★ 定電壓充電
關鍵字(英)
論文目次 目 錄
中文摘要 I
英文摘要 II
目錄 III
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究背景 5
1.3 論文大綱 10
第二章 感應線圈特性與鋰離子電池介紹 11
2.1 簡介 11
2.2 磁性元件及感應線圈原理介紹 11
2.2.1 磁性材料 11
2.2.2 感應線圈原理介紹 13
2.2.3 變壓器之等效模型. 15
2.3 磁感應之非理想效應 19
2.3.1 鐵芯損失 19
2.3.2 線圈損失 20
2.4 鋰離子電池原理與其安全保護 22
2.4.1 鋰離子電池之電化學原理 22
2.4.2 鋰離子電池之特性與規格 24
2.5 二次電池充電法簡介 26
2.5.1 定電壓充電法 26
2.5.2 定電流充電法 27
2.5.3 混合式充電法 27
2.5.4 脈衝式充電法 28
2.5.5 充電法 28
第三章TTMS320F28035數位訊號處理器 30
3.1TTMS320F28035為核心之數位訊號處理器簡介 30
3.1.1 數位訊號處理器TMS320F28035之功能簡介 30
3.1.2 記憶體規劃 31
3.2TTMS320F28035週邊功能介紹 33
3.2.1 增強型脈波寬度調變模組 33
3.2.2 中斷處理之流程 34
3.2.3 類比/數位轉換器 35
3.2.4 串列週邊介面模組 36
第四章 串聯諧振轉換器之研製 39
4.1 簡介 39
4.2 R-L-C串聯諧振電路 ..39
4.3 半橋串聯諧振轉換器之電路分析 41
4.4 半橋串聯諧振轉換器之電路動作原理 43
4.5 半橋串聯諧振轉換器之設計 51
4.5.1 電路架構與規格 51
4.5.2 硬體電路設計 52
4.5.2.1 諧振槽元件設計 52
4.5.2.2 變壓器設計 54
4.5.2.3 功率電晶體與整流二極體之選擇 57
4.5.2.4 功率級佈線設計 60
4.5.2.5 電壓與電流回授電路 61
4.5.2.6 功率級硬體保護電路 62
4.5.2.7 數位訊號處理器之類比數位轉換保護電路 63
4.5.2.8 週邊電路 64
4.5.3 系統軟體流程規劃 66
4.6 實驗結果 67
第五章 以比例積分控制器控制圓盤型線圈之非接觸式充電器之研製 75
5.1 簡介 75
5.2 感應線圈模擬 75
5.2.1 U型鐵芯磁路模擬 75
5.2.2圓盤型線圈磁路模擬 77
5.3 比例積分控制器設計 79
5.3.1 比例積分控制策略 79
5.3.2 比例積分電壓控制器設計 80
5.3.3 比例積分電流控制器設計 82
5.4 非接觸式充電系統模組整合 85
5.4.1 非接觸式充電系統硬體架構 85
5.4.2 系統軟體流程規劃 86
5.5 實驗結果 88
5.5.1 非接觸式轉換器實驗結果 89
5.5.2 非接觸式充電器實驗結果 95
第六章 以非對稱歸屬函數之TSK機率模糊類神經網路控制圓盤型線圈之非接觸式充電器之研製 97
6.1 簡介 97
6.2 非對稱歸屬函數之TSK機率模糊類神經網路控制 97
6.2.1 非對稱歸屬函數之TSK機率模糊類神經網路架構 97
6.2.2 線上學習法則 101
6.2.3 收斂性分析 104
6.3 所提之非接觸式充電系統控制架構與軟體流程規劃 106
6.3.1 所提之非接觸式轉換器系統軟體流程規劃 106
6.3.2 所提之非接觸式充電器系統軟體流程規劃 108
6.4 實驗結果 110
6.4.1 非接觸式轉換器實驗結果 110
6.4.2 非接觸式充電器實驗結果 113
第七章 結論與未來展望 117
7.1結論 117
7.2未來展望 117
參考文獻 118
作者簡歷 128
參考文獻 參考文獻
[1] 豐田汽車,http://www.toyota.com.tw/。
[2] 必翔電動車,http://www.pihsiang.com.tw/。
[3] 電動機車產業網,http://www.lev.org.tw/default.asp。
[4] A. J. Moradewicz, and M. P. Kazmierkowski, “Contactless energy transfer system with FPGA-controlled resonant converter,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3181-3190, 2010.
[5] “Wireless Charging Infrastructure for Electric Vehicles (Technical Insights),” Frost & Sullivan, 2012.
[6] 謝周宇,江朝文,磁共振無線充電系統之共振線圈設計與分析,第十二屆台灣電力電子研討會暨展覽會,台南市,102。
[7] 石金福,張志敏,電動機車用鋰離子電池之特性與發展,電機月刊雜誌,第十二卷,第九期,2002。
[8] “Electric Vehicle Application Handbook For Genesis Sealed-Lead Battery,” Hawker Energy Products Inc., 4th Edition.
[9] A. Affanni, A. Bellini, G. Franceschini, P. Guglielmi, and C. Tassoni, “Battery choice and management for new-generation electric vehicles,” IEEE Trans. Ind. Electron., vol. 52, no. 5, pp. 1343-1349, 2005.
[10] 楊模樺,電動車發展的關鍵技術-電池模組管理系統(上),工業材料雜誌,第267期,2009。
[11] 林振華,林振富編譯,充電式鋰離子電池材料與應用,全華科技圖書股份有限公司,2001。
[12] 蔡瀚章,智慧型控制數位化鋰錳電池充電器之研製,碩士論文,國立中央大學電機工程學系,桃園,2011
[13] 有量科技,http://www.amitatech.com.tw/。
[14] 孫清華,最新可充電電池技術大全(修訂版),全華科技圖書股份有限公司,2003。
[15] D. R. Carroll, “The Winning Solar Car- A Design Guide for Solar Race Car Teams,” 2003.
[16] 周志敏,周紀海,紀愛華,充電器電路設計與應用,人民郵電出版社,2005。
[17] 撲拓科技,www.topology.com.tw。
[18] 電子工程專輯,http://tech.digitmes.com.tw,數位電源技術之架構與應用。
[19] 電子&電腦資訊網,http://www.compotech.com.tw,數位電源時勢所趨。
[20] M. Budhia, G. A. Covic, and J. T. Boys, “Design and optimization of circular magnetic structure for lumped inductive power transfer systems,” IEEE Trans. Power Electron., vol. 26, no. 11, pp. 3096-3108, 2011.
[21] M. Budhia, J. T. Boys, G. A. Covic, and C. Y. Huang, “Development of a single-sided flux magnetic coupler for electric vehicle IPT charging systems,” IEEE Trans. Ind. Electron., vol. 60, no. 1, pp. 318-328, 2013.
[22] André Kurs, Aristeidis Karalis, Robert Moffatt, J. D. Joannopoulos, Peter Fisher, and Marin Soljačić, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances,” Science, vol.317 no.5834, pp.83-86, 2007.
[23] T. Imura, H. Okabe, and Y. Hori, “Study on open and short end helical antennas with capacitor in series of wireless power transfer using magnetic resonant coupling”, in Proc. IEEE IECON′09 Conf., pp. 3848-3853, 2009.
[24] T. Imura, and Y. Hori, “Maximizing air gap and efficiency of magnetic resonant coupling for wireless power transfer using equivalent circuit and Neumann formula,” IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4746-4752, 2011.
[25] N. Shinohara, Y. Kubo, and H. Tonomura, “Wireless charging for electric vehicle with microwaves,” in Proc. EDPC′13 Conf., pp. 1-4, 2013.
[26] N. Kawashima, “The importance of the development of a rover for the direct confirmation of the existence of ice on the moon,” Trans. Jpn. Soc. Aeronaut. Space Sci., vol. 43, no. 139, pp. 34-35, 2000.
[27] J. S. Hong, “Couplings of asynchronously tuned coupled microwave resonators,” IEE Proc.-Microw. Antennas Propag., vol. 147, no. 5, pp. 354-358, 2000.
[28] D. Perrone, and S. Di Stefano, “Survey of lithium-ion battery performance for potential use in NASA missions,” in Proc. IECEC-97 Conf., vol. 1, pp. 39-41, 1997.
[29] B. Carter, J. Matsumoto, A. Prater, and D. Smith, “Lithium ion battery performance and charge control,” in Proc. IECEC-96 Conf., vol. 1, pp. 363-368, 1996.
[30] G. C. Hsieh, L. R. Chen, and K. S. Huang, “Fuzzy-controlled li-ion battery charge system with active state-of-charge controller,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 585-593, 2001.
[31] A. A. -H. Hussein, and I. Batarseh, “A review of charging algorithms for nickel and lithium battery chargers,” IEEE Trans. Vehicular Technology, vol. 60, no. 3, pp. 830-838, 2011.
[32] C. C. Hua, and M. Y. Lin, “A study of charging control of lead-acid battery for electric vehicles,“ in Proc. ISIE 2000 IEEE International Symposium on Industrial Electronics, vol. 1, pp. 135-140, 2000.
[33] R. C. Cope, and Y. Podrazhansky, “The art of battery charging,” in Proc. Battery Conf. on Applications and Advances, pp. 233-235, 1999.
[34] L. R. Chen, “A design of an optimal battery pulse charge system by frequency-varied technique,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 398-405, 2007.
[35] C. H. Lin , C. Y. Hsieh, K. H. Chen , “A li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 8, pp. 1983-1992, 2010.
[36] B. Y. Chen, and Y. S. Lai, “Switching control technique of phase-shift-controlled full-bridge converter to improve efficiency under light-load and standby conditions without additional auxiliary components,” IEEE Trans. Power Electron., vol. 25, no. 4, pp. 1001-1012, 2010.
[37] M. Marvi, and A. Fotowat-Ahmady, “A fully ZVS critical conduction mode boost PFC,” IEEE Trans. Ind. Electron., vol. 27, no. 4, pp. 1958-1965, 2012.
[38] 梁適安,交換式電源供應器之理論與實務設計(修訂版),全華科技圖書,台北,民國九十七年。
[39] 梁適安譯,高頻交換式電源供應器原理與設計,第二版,全華科技圖書,民國九十一年。
[40] B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC-DC conversion,” in Proc. IEEE APEC, pp. 1108-1112, 2002.
[41] B. Yang, “Topology investigation for frond end DC-DC power conversion for distributed power system,” Ph.D. Dissertation, Virginia Tech, 2003.
[42] R. D. Middlebrook, and S. Cuk, “A general unified approach to modeling switching-converter power stage,” in Proc. IEEE Power Electronics Specialists Conf., pp. 73-86, 1976.
[43] P. R. K. Chetty, “Modeling and design of switching regulators,” IEEE Trans. Aerospace and Electronic Systems, vol. AES-18, no. 3, pp. 333-344, 1982.
[44] L. K. Wong, F. H. F. Leung, and P. K. S. Tam, “A simple large-signal nonlinear model for fast simulation of zero-current-switch quasi-resonant converters,” in Proc. IEEE PESC′96 Conf., vol. 2, pp. 1087-1091, 1996.
[45] H. K. Lam, and S. C. Tan, “Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter,” IET. Control Theory Appl., vol. 3, no. 8, pp. 1093-1106, 2009.
[46] F. J. Lin, W. J. Hwang, and R. J. Wai, “A supervisory fuzzy neural network control system for tracking periodic inputs,” IEEE Trans. Fuzzy Syst., vol. 7, no. 1, pp. 41-52, 1999.
[47] W. Yu, and X. Li, “Fuzzy identification using fuzzy neural networks with stable learning algorithms,” IEEE Trans. Fuzzy Syst., vol. 12, no. 3, pp. 411-420, 2004.
[48] F. J. Lin, H. J. Shieh, P. K. Huang, and L. T. Teng, “Adaptive control with hysteresis estimation and compensation using RFNN for piezo-actuator,” IEEE Trans. Ultrason. Ferroelectr., Freq. Control, vol. 53, no. 9, pp. 1649-1661, 2006.
[49] Y. Gao, and M. J. Er, “An intelligent adaptive control scheme for postsurgical blood pressure regulation,” IEEE Trans. Neural Netw., vol. 16, no. 2, pp. 475-483, 2005.
[50] F. J. Lin, P. K. Huang, and C. C. Wang, “An induction generator system using fuzzy modeling and recurrent fuzzy neural network,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 260-271, 2007.
[51] I. B. Kucukdemiral, and G. Cansever, “Formalization of a noval Sugeno type adaptive fuzzy sliding mode controller for a class of nonlinear systems,” in Proc. IEEE ICM′05 Conf., pp. 717-720, 2005.
[52] D. F. Specht, “Probabilistic neural network,” Neural Netw., vol. 3, no. 1, pp. 190-118, 1990.
[53] K. Z. Mao, K. -C. Tan, and W. Ser “Probabilistic neural-network structure determination for pattern classification,” IEEE Trans. Neural Netw., vol. 11, no. 4, pp. 1009-1016, 2000.
[54] J. C. Pidre, C. J. Carrillo, and A. E. F. Lorenzo, “Probabilistic model for mechanical power fluctuations in asynchronous wind parks,” IEEE Trans. Power Syst., vol. 18, no. 2, pp. 761-768, 2003.
[55] M. Tripathy, R. P. Maheshwari, and H. K. Verma, “Power transformer differential protection based on optimal probabilistic neural network,” IEEE Trans. Power Del., vol. 25, no. 1, pp. 102-112, 2010.
[56] Z. Liu, and H. X. Li, “A probabilistic fuzzy logic system for modeling and control,” IEEE Trans. Fuzzy Syst., vol. 13, no. 6, pp. 848-859, 2005.
[57] H. X. Li, and Z. Liu, “A probabilistic neural-fuzzy learning system for stochastic modeling,” IEEE Trans. Fuzzy Syst., vol. 16, no. 4, pp. 898-908, 2008.
[58] M. Chen, and G. A. Rincon-Mora, “Accurate, compact, and power efficient Li-Ion battery charger circuit,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 11, pp. 1180-1184, 2006.
[59] G. Hiziroglu, Electromagnetic Field Theory Fundamentals, 2002.
[60] 趙修科,開關電源中磁性元件,遼寧科學技術出版社,2002。
[61] 萬泰麟,非接觸式感應充電技術應用於小家電裝置之研究,國立成功大學電機工程學系,碩士論文,2007。
[62] X. Nan, and C. R. Sullivan., “An improved calculation of proximity-effect loss in high-frequency windings of round conductors,” in Proc. IEEE PESC′03 Conf., 2003.
[63] James W. Nilsson, and Susan A. Riedel, Electric Circuits 6th edition, 2000.
[64] 黃淇豪,以同軸變壓器實現之非接觸式供電系統,碩士論文,國立中央大學電機工程學系,桃園,2008。
[65] R. Erickson, and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2001.
[66] 杜冠賢,陳耀銘,吳財福,姜士凱,鋰離子電池充電器研製,第六屆台灣電力電子研討會,2007。
[67] Texas Instruments Inc., “TMS320F28030/28031/28032/28033/28034/ 28035 piccolo microcontrollers, rev B”, 2009.
[68] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo enhanced pulse width modulator (ePWM) module, rev C”, 2009.
[69] Texas Instruments Inc., “TMS320F2803x piccolo system control and interrupts, rev A”, 2009.
[70] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo analog-to- digital converter (ADC) and comparator, rev B”, 2009.
[71] Texas Instruments Inc., “TMS320x2802x, 2803x piccolo serial peripheral interface (SPI), rev B”, 2009.
[72] 黃治瑋,應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達伺服驅動系統,碩士論文,國立中央大學電機工程學系,桃園,2010。
[73] 李坤源,寬輸入電壓範圍之高效率半橋串聯諧振轉換器研製,碩士論文,國立台灣科技大學電子工程系,台北市,2009。
[74] G. C. Hsieh, C. Y Tsai, and S. H. Hsieh, “Design consideration for LLC series-resonant converter in two-resonant regions,” in Proc. IEEE Power Electronics Specialists Conf., pp. 731-736, Jun. 2007.
[75] 李英竹,具前端脈波高度調變調控之串聯諧振轉換器設計,碩士論文,國立台北科技大學電機工程系,台北市,2012。
[76] 王昇龍,智慧型控制數位化串聯諧振轉換器之研製,碩士論文,國立中央大學電機工程學系,桃園,2013。
[77] J. M. Alonso, M. S. Perdigao, D. G. Vaquero, A. J. Calleja, and E. S. Saraiva,“Analysis, design and experimentation on constant-frequency DC-DC resonant converters with magnetic control,” IEEE Trans. Ind. Electron., vol. 27, no. 3, pp. 1369-1382, 2012.
[78] 陳宜宏,實現數位控制之LLC 諧振轉換器,碩士論文,國立台北科技大學電機工程系,台北市,2010。
[79] J. W. Shin and B. H. Cho, “Digitally implemented average current-mode control in discontinuous conduction mode PFC rectifier,” IEEE Trans. Power Electron., vol. 27, no. 7, pp. 3363-3373, 2012.
[80] R. Beiranvand, B. Rashidian, M. R. Zolghadri, and S. M. H. Alavi, “Optimizing the normalized dead-time and maximum switching frequency of a wide-adjustable-range LLC resonant converter,” IEEE Trans. Power Electron., vol. 26, no. 2, pp. 462-472, 2011.
[81] 謝士弘,LLC半橋串聯諧振式轉換器之設計考量與研製,碩士論文,國立台灣科技大學電子工程系,台北市,2006。
[82] M. Chen, D. Xu, and M. Matsui, “Study on magnetizing inductance of high frequency transformer in the two transistor forward converter,” in Proc. Power Conversion Conf., vol 2, pp. 597-602, 2002.
[83] “Soft Ferrites and Accessories Data Handbook,” Ferroxcube Inc., 2013
[84] B. H. Lee, M. Y. Kim, C. E. Kim, K. B. Park, and G. W. Moon, “Analysis of LLC resonant converter considering effects of parasitic components,” in Proc. INTELEC Conf., pp. 1-6, 2009.
[85] S. Korotkov, V. Meleshin, R. Miftahutdinov, and S. Fraidlin, “Soft-switched asymmetrical half-bridge DC-DC converter: Steady state analysis. An analysis of switching process,” in Proc. Telecommunications Energy Special Conf., pp. 177-184, 1997.
[86] FQA44N30 Application Note, Fairchild Semiconductor Co.
[87] STPS30L120C Application Note, STMicroelectronics Inc.
[88] M. C. Caponet, F. Profumo, R. W. De Doncker, and A. Tenconi, “Low stray inductance bus bar design and construction for good EMC performance in power electronic circuits,” in Proc. IEEE PESC Conf., vol.2 , pp. 916-921, 2000.
[89] HTY 37.5-P Application Note, LEM Co.
[90] MCP4922 Application Note, Microchip Technology Inc.
[91] 謝曜竹,無電解電容與單級控制之三相具電氣隔離車用電池充電器設計,碩士論文,國立台北科技大學電機工程系,台北市,2012。
[92] F. J. Lin, M. S. Huang, Y. C. Hung, C. H. Kuan, S. L. Wang, and Y. D. Lee, “Takagi-Sugeno-Kang type probabilistic fuzzy neural network control for grid-connected LiFePO4 battery storage system,” IET Power Electron., vol. 6, no. 6, pp. 1029-1040, 2013.
[93] F. J. Lin, Y. C. Hung, and M. T. Tsai, “Fault tolerant control for six-phase PMSM drive system via intelligent complementary sliding mode control using TSKFNN-AMF,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5747-5762, 2013.
[94] K. H. Cheng, C. F. Hsu, C. M. Lin, T. T. Lee, and C. Li, “Fuzzy neural sliding mode control for dc-dc converters using asymmetric gaussian membership functions,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1528-1536, 2007.
[95] C. H. Lee, T. W. Hu, C. T. Lee, and Y. C. Lee, “A recurrent interval type-2 fuzzy neural network with asymmetric membership functions for nonlinear system identification,” in Proc. IEEE Conf. Fuzzy System, pp. 1496-1502, 2008.
[96] 官啟玄,以TSK機率模糊類神經網路控制之磷酸鋰鐵電池儲能系統之研製,碩士論文,國立中央大學電機工程學系,桃園,2012。
[97] F. J. Lin, P. H. Chou, Y. C. Hung, and W. M. Wang, “Field-programmable gate array-based functional link radial basis function network control for permanent magnet linear synchronous motor servo drive system,” IET Electr. Power Appl., vol. 4, no. 5, pp. 357-372, 2010.
[98] S.J., Yoo, Y.H., Choi, and J.B., Park, “Generalized predictive control based on self-recurrent wavelet neural network for stable path tracking of mobile robots: adaptive learning rates approach,” IEEE Trans. Circuits and Systems, vol. 53, no. 6, pp. 1381-1395, 2006.
指導教授 林法正(Faa-jeng Lin) 審核日期 2014-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明