博碩士論文 102322028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.141.47.163
姓名 李弘淵(Hung-yuan Lee)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 橋梁直接基礎搖擺極限破壞分析
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年地震對世界各地造成之重大災害,使隔震系統成為位於地震帶國家經常使用之耐震設計方式,藉由延長結構物自然振動週期,以降低引致之地震力,其效益更勝於傳統採用韌性設計之耐震系統。過去已有多位學者提出橋梁直接基礎搖擺機制如同隔震系統,並於震後發現直接基礎之搖擺機制可降低傳遞至上部結構之地震力,並且透過搖擺機制產生振動周期延長降低地震力,也可藉由土壤於大地震下之塑性行為吸收地震能量。
本研究旨在將已開發非線性土壤元素放入空間向量式有限元素計算流程中,建立土壤與基礎互制之模型驗證彈簧之正確性,並模擬橋梁於強震中土壤與基礎之高度非線性行為。
本研究採用空間向量式有限元素(3D Vector Form Intrinsic Finite Element)為結構動力分析方法,此方法適用於處理大變形、大變位、材料非線性與剛體運動等問題。為了模擬土壤與基礎互制關係,本研究參考UC Berkeley團隊非線性土壤彈簧模型(Beam-on-Nonlinear-Winkler Foundation),此模型可用以模擬垂直向土壤(q-z spring)、水平雙向被動土壤(p-x & p-y spring)與土壤結構間摩擦力(t-x & t-y spring),經由算例分析驗證此土壤彈簧之正確性,最後以五跨連續梁橋作為模型,探討其參數變化對橋梁之影響,並模擬至極限狀態,瞭解橋梁在在極限狀態下之橋梁反應。
摘要(英) In recent years, the earthquake caused many disasters in the world. Many countries must be use the isolation system in seismic design. By prolonging the structural period to reduce the seismic force is better than traditional design. From researches we can see that the rocking response of spread foundation is a unique isolation system. After earthquakes, the rocking mechanism of spread foundation can reduce the seismic force of the main structure, besides it can extend the period of structure and decrease the seismic force. In addition, the soil will generate the plastic behavior and absorb the seismic energy under the extreme earthquake.
This study aims to place the nonlinear soil spring to the 3D-VFIFE calculation process. Modeling soil and foundation interaction system to verify the correctness of the nonlinear soil spring, and simulate the bridge’s extreme behavior in the earthquake.
3D Vector Form Intrinsic Finite Element, a new computational method is adopted in this study because the VFIFE has the superior in managing the engineering problems with material nonlinearity, discontinuity, large deformation and arbitrary rigid body motions of deformable bodies. In order to simulate the interaction between soil and foundation, the study reference UC Berkeley team’s soil spring (Beam-on-Nonlinear-Winkler Foundation). This model can simulate the vertical soil (q-z spring), lateral passive soil (p-x & p-y spring) and the friction force between soil and foundation (t-x & t-y spring). Through numerical simulation of examples to verify the soil element model are feasible and accurate. Finally, five-span continuous bridge as a model to investigate the effect of the parameter changes, and to understand the bridge behavior in ultimate condition.
關鍵字(中) ★ 空間向量式有限元素
★ 橋梁
★ 動力分析
★ 直接基礎
★ 搖擺機制
★ 土壤彈簧
★ 極限狀態
關鍵字(英) ★ 3D-VFIFE
★ bridge
★ dynamic analysis
★ spread foundation
★ rocking mechanism
★ soil spring
★ ultimate state
論文目次 摘 要 Ⅰ
Abstract Ⅱ
誌 謝 Ⅲ
目 錄 Ⅳ
表 目 錄 Ⅶ
圖 目 錄 Ⅷ
第一章 緒論 1
1.1研究背景與動機 1
1.1.1直接基礎搖擺機制 2
1.2文獻回顧 3
1.2.1向量式有限元素法 3
1.2.2直接基礎搖擺機制 7
1.3論文架構 10
第二章 空間向量式有限元素法 12
2.1結構離散模式 13
2.2質點運動方程式 13
2.3運動軌跡離散化 17
2.4變形與內力計算 18
2.4.1空間梁元素之移動基礎架構 20
2.4.2節點位移與梁元素變形 26
2.4.3內力計算 30
2.5隱式Newmark-β直接積分計算程序 36 2.6 雷利阻尼分析 42
第三章 土壤與直接基礎互制關係 60
3.1前言 60
3.2土壤彈簧勁度之相關規範與計算 61
3.2.1公路橋樑耐震設計規範之補充研究 62
3.2.2日本道路橋示方書.同解說 66
3.2.3公路橋樑耐震性能設計規範解說 69
3.3溫克勒模型 71
3.3.1垂直向土壤彈簧 71
3.3.2水平向被動土壤彈簧 74
3.3.3水平向剪力土壤彈簧 77
3.4極限承載容量 80
3.4.1垂直向極限承載容量 80
3.4.2水平向被動極限承載容量 82
3.4.3水平向剪力土極限承載容量 84
3.4土壤阻尼 84
第四章 數值算例驗證 93
4.1非線性土壤彈簧之建立 93
4.1.1垂直向土壤彈簧 93
4.1.2水平向被動土壤彈簧 94
4.1.3水平向剪力土壤彈簧 97
4.2空間向量式有限元素法驗證 99
4.3土壤彈簧元素之空間向量式有限元素分析 100
4.3.1土壤彈簧參數計算 100
4.3.2土壤彈簧驗證 101
4.4小結 104
第五章 橋梁實例分析與參數研究 119
5.1目標橋梁與分析模型 119
5.2數值分析模型 120
5.2.1上部結構模擬 120
5.2.2下部結構模擬 123
5.2.3支承系統模擬 124
5.2.4防止落橋裝置模擬 125
5.2.5土壤彈簧參數 127
5.3線性與非線性土壤彈簧 129
5.4參數探討 132
5.4.1標準貫入試驗N值 132
5.4.2基礎尺寸大小 136
5.4.3不同向地震紀錄下橋梁反應 141
5.5小結 145
5.6全橋極限破壞分析 146
第六章 結論與未來展望 205
參考文獻 209
參考文獻 [1] Ting, E. C., Shih, C. and Wang, Y. K., “Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element,” Journal of Mechanics, Vol.20, No.2, pp. 113-122, 2004.
[2] Ting, E. C., Shih, C. and Wang, Y. K., “Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements,” Journal of Mechanics, Vol.20, No.2, pp. 123-132, 2004.
[3] Shih C., Wang, Y. K. and Ting, E. C., “Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples,” Journal of Mechanics, Vol.20, No.2, pp. 133-143, 2004.
[4] Wang, C. Y., Wang, R. Z., Kang, L. C. and Ting, E. C., “Elastic-Plastic Large Deformation Analysis of 2D Frame Structure,” Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (IUTAM), SM1S-10270, Warsaw, Poland, August 15-21, 2004.
[5] Wu, T. Y., Wang, R. Z. and Wang, C. Y., “Large Deflection Analysis of Flexible Planar Frames,” Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 593-606, 2006.
[6] 王仁佐,「向量式結構運動分析」,國立中央大學土木工程學研究所,博士論文,民國94年。
[7] 莊清鏘、陳詩宏和王仲宇,「向量式有限元於結構被動控制之應用」,固體與結構之工程計算-2006近代工程計算論壇,第O1-O25頁,2006。
[8] Wang, C. Y., and Wang, R. Z., “Nonlinear Dynamic Analysis of Space Frame Structures, “ Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures, Cornell University, Ithaca, NY, USA, 2008.
[9] Wang, C. Y., Wang, R. Z., and Tsai, K. C., “Numerical Simulation of the Progressive Failure and Collapse of Structure under Sesimic and Impact Loading,” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 84, 2004.
[10] 莊清鏘、陳詩宏、王仲宇 (2006),〝向量式有限元於結構被動控制之應用〞,固體與結構之工程計算-2006近代工程計算論壇,第O1-O25頁。
[11] 陳柏宏,「運用向量式有限元素法於隔震橋梁之非線性動力分析」,國立中央大學土木工程學研究所,碩士論文,民國97年。
[12] 陳開天,「橋梁碰撞效應研究」,國立中央大學土木工程學研究所,碩士論文,民國99年。
[13] 蘇俊全,「強震中橋梁極限破壞三維分析」,國立中央大學土木工程學研究所,碩士論文,民國100年。
[14] 陳怡文,「考量斷層錯動與塑鉸破壞之橋梁極限分析」,國立中央大學土木工程學研究所,碩士論文,民國102年。

[15] API (1987), Recommended Practice for Planning, Designing and Constructing Fixed Off-shore Platforms API Recommended Practice 2A (RP2A), Seventeenth Edition, American Petrolium Institute
[16] Apostolou, M., Gazetas, G. and Garini, E. (2006), “Seismic response of slender rigid structures with foundation uplifting,” Soil Dynamics and Earthquake Engineering, Vol. 27, pp.642-654.
[17] Boulanger, R. W., Curras, C. J., Kutter, B. L., Wilson D. W. and Abghari, A. (1999), “Seismic Soil-Pile-Structure Interaction Experiments And Analysis, ” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 125, No. 9, pp. 750-759.
[18] Davis, J. B. and George, H. (2005), “Dynamic response considering rocking of foundations,” ECI 285-Computational Geomechanics.
[19] Deng, L., Kutter, B. L. and Kunnath, S. K. (2012), “Centrifuge modeling of bridge systems designed for rocking foundations,” J. Geotech. Geoenviron. Eng., Vol. 137, No. 3, pp. 335-344.
[20] Gazetas, G. and Dobry, R. “Simple Radiation Damping Model for Piles and Footings,” Journal of Engineering Mechanics, Vol. 110, No. 6, pp. 937-956, 1984.
[21] Housner, G. W. (1963), “The behavior of inverted pendulum structures during earthquakes,” Bulletin of the Seismological of America, Vol.53, No. 2, pp. 403-417.
[22] Hung, H. H., Liu, K.Y., Ho, T. H. and Chang K. C. (2010), “An experimental study on the rocking response of bridge piers with spread footing foundations,” Earthquake Engineering Structural Dynamics, Vol. 40 pp. 749-769.
[23] Gibbs, H. J. and Holtz, W.G. (1957), “Research on Determining the Density of Sands by Spoon Testing.” Proc. 4th International Conference on Soil Mechanics and Foundation Engineering, Lodon, England ,Vol. 1 pp. 35,39.
[24] Japan Road Association, 2002. Specifications for Highway Bridges, Part IV Substructures, Tokyo, Japan.
[25] Japan Road Association, 2002. Design Specification of Highway Bridges, Part V Seismic Design, Maruze, Tokyo, Japan.
[26] Kawashima, K. and Unjoh, S. (1989), “Rocking response of a rigid foundation subjected to seismic excitations,” Civil Engineering Journal, Japan, Vol. 32, No. 10, pp. 60-66.
[27] Kawashima, K. and Unjoh, S. (1991), “Overturning of rigid foundation resting on ground with insufficient yield strength,” Civil Engineering Journal, Japan, Vol. 33, No. 3, pp. 54-59.
[28] Kawashima, K., Unjoh, S. and Mukai, H. (1994), “Inelastic rocking of direct foundation during an earthquake,” Civil Engineering Journal, Japan, Vol. 36, No. 7, pp. 50-55.
[29] Kawashima, K., Watanabe, G., Sakeraraki, D. and Nagai, T. (2005), “Rocking isolation of bridge foundations,” 9th World Seminar on Seismic Isolation, Energy Dissipation and Active Vibration Control of Structures, Kobe, Japan, June 13-16.
[30] Kawashima, K. and Nagai, T. (2006), “Effectiveness of rocking seismic isolation on bridge,” 4th International Conference on Earthquake Engineering, Taipei, Taiwan, October 12-13.
[31] Kawashima, K. (2009), “Rocking seismic isolation of bridges supported by direct foundations,” Caltrans-PEER Seismic Research Seminar Sacramento, CA, USA.
[32] Lysmer, J. “Vertical Motions of Rigid Footings (1965),” Thesis of Doctor of Science, University of Michigan, U.S.A
[33] Mergos, P. E. and Kawashima, K. (2005), “Rocking isolation of a typical bridge pier on spread foundation,” Journal of Earthquake Engineering, Vol. 9, No. 2, pp. 395-414.
[34] OpenSees (2008), “Open System for Earthquake Engineering Simulation: OpenSees.” Pacific Earthquake Engineering Research Center (PeeR), University of California, Berkeley.
[35] Paolucci, R. and Pecker, A. (1997), “Seismic bearing capacity of shallow strip foundation on dry soils,” Soils and Foundations, Vol. 37, No. 3, pp. 95-105.
[36] Raychowdhury, P. and Hutchinson, T. C. (2009), “Performance evaluation of a nonlinear winkler-based shallow foundation model using centrifuge test results,” Earthquake Engng Struct. Dyn., Vol. 38, pp. 679-698.
[37] Sakellaraki, D., Watanabe, G. and Kawashima, K. (2005), “Experimental rocking response of direct foundation of bridge,” Second International Conference on Urban Earthquake Engineering, Tokyo Institute of Technology, Tokyo, Japan, March7-8, pp. 497-504.
[38] Sakellaraki, D. and Kawashima, K. (2006), “Effectiveness of seismic rocking isolation of bridges based on shake table test,” First European Conference on Earthquake Engineering and Seismology, Geneva, Switzerland, September 3-8.
[39] Wang, S., Kutter, B. L., Chacko, M. J., Daniel, W., Wilson, D. R., Boulanger, W. and Abghari, A. (1998), “Nonlinear Seismic Soil-Pile Structure Interaction,” Earthquake Spectra, Volume 14, No. 2, pp. 377-396.
[40] Terzaghi, K. and Peck, R. B. (1948). Soil Mechanics in Engineering Practice. John Wiley and Sons, New York, NY.
[41] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part I. Basic Procedure and a Plane Frame Element," Journal of Mechanics, Vol.20, No.2, pp. 113-122.
[42] Ting, E. C., Shih, C. and Wang, Y. K. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part II. Plane Solid Elements," Journal of Mechanics, Vol.20, No.2, pp. 123-132.
[43] Shih, C., Wang, Y. K. and Ting, E. C. (2004), "Fundamentals of a Vector Form Intrinsic Finite Element: Part III. Convected Material Frames and Examples," Journal of Mechanics, Vol.20, No.2, pp. 133-143.
[44] Wang, C. Y., Wang, R. Z., Kang, L. C. and Ting, E. C. (2004), "Elastic-Plastic Large Deformation Analysis of 2D Frame Structure," Proceedings of the 21st International Congress of Theoretical and Applied Mechanics (IUTAM), SM1S-10270, Warsaw, Poland, August 15-21.
[45] Wu, T. Y., Wang, R. Z. and Wang, C. Y. (2006), "Large Deflection Analysis of Flexible Planar Frames," Journal of the Chinese Institute of Engineers, Vol. 29, No. 4, pp. 593-606.
[46] Wang, C. Y. and Wang, R. Z. (2008), “Nonlinear Dynamic Analysis of Space Frame Structures,” Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures, Cornell University, Ithaca, NY, USA.
[47] Watanabe, G. and Kawashima, K. (2004), "Numerical Simulation of Pounding of Bridge Decks," 13th World Conference on Earthquake Engineering.
[48] 洪曉慧、張國鎮、劉光晏、何姿慧 (2008),「直接基礎之搖擺實驗與分析」,國家地震工程研究中心,報告編號:NCREE-08-040。
[49] 賴姿妤 (2011),「樁基礎沖刷橋梁模型之振動台試驗研究」,碩士論文,國立台灣大學土木工程研究所,張國鎮。
[50] 蔡益超、張荻薇、黃震興 (1997),「公路橋梁耐震設計規範之補充研究」,交通部台灣區國道新建工程局。
[51] 宋裕棋 (2012),「公路橋梁耐震性能設計規範研究(第二期)上冊」,交通部台灣區國道新建工程局。
[52] 黃敏彥,「橋梁直接基礎搖擺之極限分析」,國立中央大學土木工程學研究所,碩士論文,民國102年。
指導教授 李姿瑩 審核日期 2014-10-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明