博碩士論文 101324053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.12.148.180
姓名 詹雅雯(Ya-Wun Jan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米氧化鋯之表面接枝及其與壓克力樹酯複合膜之電泳沉積
(Grafting of nano-zirconia and electrophoretic deposition of acrylate/zirconia composite film)
相關論文
★ MFI沸石奈米結晶製備研究★ 氧化鋅奈米粒子的表面改質與分散
★ 濕法製備氧化鋅摻雜鋁之透明導電膜★ 強吸水性透明奈米沸石膜
★ 奈米氧化鋅透明導電膜的製作★ 製作AZO透明導電膜的各種嘗試
★ 奈米結晶氧化鋯合成與分散★ 接枝PDMS之奈米氧化鋯及其與矽膠複合膜之光學性質
★ 沸石晶核的製備與排列★ 納米級氧化鋯結晶粒子之高濃度穩定懸浮液製備
★ 聚芳香羧酸酯之合成及性質研究★ MFI沸石超微粒子之製作
★ 四氯化鈦之控制水解研究★ 具環氧基矽烷包覆奈米粒子之研究
★ 具再分散性之奈米級氧化鋯結晶粒子之合成研究★ 塑膠表面抗磨層之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在之前的研究中,我們實驗室已經能夠成功製作出粒徑約10 nm左右的氧化鋯粒子,並藉由適當的改質有機酸及矽烷讓其能分散於酯類及醇類等極性溶劑中。藉由添加這些奈米粒子到壓克力樹酯中,我們可以提升樹酯的折射率同時保持樹酯的透光性,並能添加到約47 vol%的氧化鋯粒子而將折射率提高至1.69。這種具有高折射率且透光的樹酯膜可以應用在增亮膜(brightness enhancement for FPD)、手機面板、以及固態LED封裝等材料上。
奈米複合材料是藉由奈米粒子的添加來增加母體的性質,通常添加的粒子量越多對於性質的強化越為顯著,但是由於膠體液黏度會隨著粒子添加量的增加呈現指數性的上升,以致無法塗佈。故傳統的塗膜方式所製作出來的複合膜,其無機含量都限制在約50 vol%上下,無法有更進一步的突破。電泳沉積製程 (EPD),是一種可解決這限制的方法。在一外加的直流電場中,膠體溶液中的膠粒會受到電場的作用往一邊的電極移動而聚集,並且有順序的堆積到電極上形成一緻密膜層,藉由此方法可以製作出具有高無機含量之奈米複合膜。本研究中,利用電泳沉積法製作出了具有高無機含量之有機無機奈米複合膜。
我們首先對實驗室過去的矽烷改質方法做了檢討,發現改質過程中不添加水,而以Non-hydrolytic反應進行的矽烷接枝是可行的。此法最大的好處是可以減少矽烷的用量並可以減少反應所需時間。接著我們驗證了經由矽烷接枝後分散的氧化鋯粒子的確具有正電性,適合進行電泳沉積製程。在此還利用了兩種不同原理的表面電位測量儀器來互相應證。最後,我們成功做出了含有82 wt%複合氧化鋯粒子、體積分率達64 vol%的連續透明複合膜。可惜因為複合粒子之折射率較低,故折射率僅能達到1.64,並建立了電泳沉積步驟的基礎參數與其所獲膜材之性質鑑定。
摘要(英) The synthesis of sub-10 nm zirconia nanocrystals, as well as the dispersion of them in polar and non-polar solvents after proper surface modification, had already been accomplished in our previous studies. By adding comparable resin to the dispersion, we could prepare a transparent composite having 47 vol% ZrO2 nanoparticles and a refractive index of 1.69. Such a high reflection index material is useful as brightness enhancement film for FPD, a simpler lens-stack for cellular phone, or a more efficient second order optical design for the LED lighting systems.
The index of the ZrO2/resin composite could be increased further, by loading with more nanoparticles. This was impossible previously since the viscosity increased exponentially as the inorganic content approaching a threshold. Electrophoretic deposition (EPD) may be a way to overcome this problem. By depositing the organic modified nanoparticles at the electrode under the compression of the electric field, the particle may self-assemble into a densely-packed film on the electrode.
In this study, electrophoretic deposition was used to preparing a zirconia nanoparticles/polymer composite with a high inorganic fraction. We start by substituting the previous silanes modification scheme with a non-hydrolytic one. We found that this could approach save about 20% silane and take less time to react. We also measured the zeta potential of the modified particles with two different instruments, and confirmed that they were positively charged. Finally, we successfully made a continuous transparent nanocomposite which had nearly 82 wt% / 64 vol% filler loading, and establish a guideline for controlling the properties of the EPD nanocomposite film.
關鍵字(中) ★ 氧化鋯
★ 電泳沉積
★ 壓克力
★ 複合材料
關鍵字(英)
論文目次 目錄
中文摘要 I
Abstract III
致謝 IV
目錄 VI
表目錄 VIII
圖目錄 IX
第一章、緒論 1
1-1 背景與研究動機 1
第二章、文獻回顧 3
2-1 電泳沉積原理 3
2-2 膠體溶液的穩定性 5
2-2-1 電雙層及DLVO理論 5
2-2-2 Zeta電位量測法 8
2-3 電泳沉積應用 10
第三章、實驗步驟與方法 14
3-1 實驗架構 14
3-2 實驗藥品 15
3-3 氧化鋯合成 16
3-4 有機酸改質氧化鋯 17
3-5 矽烷部分取代 18
3-5-1 Non-Hydrolytic condensation之矽烷部分取代 20
3-5-2填料物性 25
3-6電泳實驗建立 30
3-6-1電泳設備 31
3-6-2實驗步驟 32
第四章、電泳沉積膜製作變因研究之結果與討論 33
4-1基材的選擇 33
4-2沉積時間與厚度關係 34
4-3電泳液中溶劑的選擇 36
4-4電泳液中粉體濃度的改變 39
4-5外加電場的變化 39
4-6複合膜之折射率量測 45
4-7實驗小結 45
第五章、總結與未來展望 49
附錄 54
附錄A 無水及有水環境下接枝矽烷之比較 54
A-1 NMR分析及矽烷替換率 55
A-2 粒徑大小與電性 65
參考文獻 1. Chisholm, B.J., Jr.Smigelski, Paul Michael, Pickett and James Edward, High refractive index, UV-curable monomers and coating compositions prepared therefrom. US patent 7,271,283, 2007.
2. Pang, X. and I. Zhitomirsky, Electrodeposition of composite hydroxyapatite–chitosan films. Materials Chemistry and Physics, 2005. 94(2–3): p. 245-251.
3. Lin, T.-H., et al., Electrophoretic deposition of biomimetic nanocomposites. Electrochemistry Communications, 2009. 11(1): p. 14-17.
4. Lin, T.-H., et al., Bioinspired Assembly of Colloidal Nanoplatelets by Electric Field. Chemistry of Materials, 2009. 21(10): p. 2039-2044.
5. Lin, T.-H., et al., Electrophoretic co-deposition of biomimetic nanoplatelet–polyelectrolyte composites. Electrochemistry Communications, 2009. 11(8): p. 1635-1638.
6. B.R.Furman, S.T.Wellinghoff, and C.K.Baker, Electrophoretic formation of nanostructured composites. US patent Application 20120006686, 2012.
7. Furman, B., et al., Electrophoretic deposition of organically modified gibbsite nanocomposites with liquid crystalline character. Journal of Materials Science, 2012. 47(19): p. 6896-6907.
8. Bird, R.B., W.E. Stewart, and E.N. Lightfoot, Transport phenomena. 2007: John Wiley & Sons.
9. Sarkar, P. and P.S. Nicholson, Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics. Journal of the American Ceramic Society, 1996. 79(8): p. 1987-2002.
10. Russel, W.B., D.A. Saville, and W.R. Schowalter, Colloidal dispersions. 1992: Cambridge university press.
11. Pecora, R., Dynamic light scattering: applications of photon correlation spectroscopy. 1985: Springer.
12. Delgado, A., et al., Dynamic electrophoretic mobility of concentrated suspensions: Comparison between experimental data and theoretical predictions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005. 267(1): p. 95-102.
13. The Measurement of the ESA Effect. Colloidal Dynamics 1999.
14. Nishimori, H., et al., Preparation of thick silica films in the presence of poly(acrylic acid) by using electrophoretic sol-gel deposition. Journal of Sol-Gel Science and Technology, 1996. 7(3): p. 211-216.
15. Nishimori, H., M. Tatsumisago, and T. Minami, Influence of Size of Dispersed Silica Particles on Preparation of Thick Silica Films by Using Electrophoretic Sol–Gel Deposition. Bulletin of the Chemical Society of Japan, 1996. 69(3): p. 815-818.
16. Hasegawa, K., et al., Preparation of Thick Films by Electrophoretic Deposition Using Surface Modified Silica Particles Derived from Sol-Gel Method. Journal of Sol-Gel Science and Technology, 1999. 15(3): p. 243-249.
17. Hasegawa, K., et al., Effect of poly(acrylic acid) on the preparation of thick silica films by electrophoretic sol–gel deposition of re-dispersed silica particles. Journal of Materials Science, 1998. 33(4): p. 1095-1098.
18. Simović, K., et al., Electrophoretic deposition of thin alumina films from water suspension. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002. 209(1): p. 47-55.
19. Tang, F., T. Uchikoshi, and Y. Sakka, Electrophoretic Deposition Behavior of Aqueous Nanosized Zinc Oxide Suspensions. Journal of the American Ceramic Society, 2002. 85(9): p. 2161-2165.
20. Valov, I., D. Stoychev, and T. Marinova, Study of the kinetics of processes during electrochemical deposition of zirconia from nonaqueous electrolytes. Electrochimica Acta, 2002. 47(28): p. 4419-4431.
21. 白謹通, Preparation of dispersible c-ZrO2 nanocrystals. 中央大學, 2012.
22. Corriu, R., et al., Preparation of monolithic binary oxide gels by a nonhydrolytic sol-gel process. Chemistry of materials, 1992. 4(5): p. 961-963.
23. Caruso, J. and M.J. Hampden-Smith, Ester elimination: A general solvent dependent non-hydrolytic route to metal and mixed-metal oxides. Journal of Sol-Gel Science and Technology, 1997. 8(1-3): p. 35-39.
24. Jansen, M. and E. Guenther, Oxide Gels and Ceramics Prepared by a Nonhydrolytic Sol-Gel Process. Chemistry of Materials, 1995. 7(11): p. 2110-2114.
25. 邱顯皓, High refractive index ZrO2/acrylic nanocomposite. 2013.
26. Brochier Salon, M.-C. and M.N. Belgacem, Hydrolysis-Condensation Kinetics of Different Silane Coupling Agents. Phosphorus, Sulfur, and Silicon and the Related Elements, 2011. 186(2): p. 240-254.
指導教授 蔣孝澈 審核日期 2014-10-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明