博碩士論文 87246003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.191.165.192
姓名 盧聖華(Sheng-Hua LU)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 外腔二極體雷射絕對距離干涉術及其應用之研究
(Absolute distance interferometry with an external cavity diode laser and its applications)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以外腔二極體雷射做為干涉儀的光源,利用其波長可調與易於操控的特性,來實現絕對距離干涉術並探討其應用。
此論文研究的絕對距離干涉術有兩種:波長掃描干涉術與可變式合成波長干涉術。
所有實驗的基本架構為波長可調外差干涉儀,光源是外腔二極體雷射,波長可從772 nm連續變化至792 nm。此干涉儀以外差技術量測干涉相位、用波長儀決定雷射波長、和採取間接量測方式獲得空氣折射率。波長可調外差干涉儀搭配不同的光路,有不同的應用。
波長掃描干涉術紀錄因波長掃描引起的相位變化,即可推算出絕對光程差。在能力測試實驗中,光路安排為Michelson干涉光路。此能力測試包括測距與尋找零光程差位置。測距範圍50 mm以內,量測誤差小於1 mm,而解析度優於200 nm。重複交互使用波長掃描干涉術與單波長干涉術,最終零光程差位置的準確度可達到nm等級。在大階高量測應用中,改採差動干涉光路來降低環境擾動,及使用準確度較高的波長儀及相位計。當待測階高小於50 mm時,量測偏差值低於100 nm。
實施波長掃描干涉術時,波長必須是連續掃描,但跳模會縮短外腔二極體雷射的波長可用範圍,進而降低量測準確度。可變式合成波長干涉術是本研究針對波長掃描干涉術缺點,所提出的新方法,此干涉術以外腔二極體雷射產生一系列由大到小的合成波長,依序對待測光程差進行量測,由這些合成波長及其對應的小數條紋數即可推算出待測光程差。因為不要求波長連續變化,所以可充分利用雷射增益曲線,而且不需要條紋計數器。
驗證可變式合成波長干涉術的實驗有兩個,第一個實驗是重複先前的大階高量測,在量測範圍小於25 mm時,準確度約80 nm。第二個實驗是不透明平行板的厚度量測,為了免除扭合問題,使用了改良型雙端面干涉光路,10 mm塊規的量測偏差約480 nm。
摘要(英) The main objective of this dissertation is to study the absolute distance interferometry with a tunable external cavity diode laser (ECDL), and its applications.
Two different ADIs are investigated in this study. They are wavelength scanning interferometry (WSI) and variable synthetic wavelength interfeometery (VSWI).
The basic setup of all experiments is a wavelength-tunable heterodyne interferometer (WTHI). The light source is an ECDL, whose wavelength can be continuously tuned from 772 nm to 792 nm. The WTHI measures the interference phase by heterodyne technique, determines the laser wavelength with wavelength meters, and obtains the refractive index of air by indirective measurement method. For various applications, the WTHI is with different optical layouts.
WSI determines an optical path difference (OPD) by directly counting the interference fringes as the wavelength is scanned through a known change in wavelength. In the experiment of testing the capabilities of WSI, the optical configuration is a Michelson interferometer with retrorefletors. The tests include distance measurement, resolution verification, and the identification of central fringe. The error and resolution are nearly 1mm and 200 nm, respectively, when the distance to be measured is less than 50 mm. By alternately employing WSI and single wavelength interferometry, the position accuracy of zero OPD is about several nanometers. In the application of measuring large step heights, the Michelson interferometer is replaced with a differential interferometer, which can reduce the influences of environmental disturbances. Besides, wavelength meter and phase measuring instruments with higher accuracy are used. Three gauge blocks of different lengths, 5 mm, 10 mm and 50 mm, are individually wrung on a steel plate to simulate large step heights. Comparing the results measured by the proposed interferometer with those by the gauge block interferometer reveals that the accuracy is around 100 nm.
To implement the WSI with high accuracy, the laser wavelength must be continuously scanned over a wide range. The appearance of mode hops shortens the useful range of an ECDL although the gain bandwidth of the diode is very wide. This study describes a new method, VSWI, which also has no fringe order ambiguity problem but does not require that the laser be continuously tuned. An unknown OPD is sequentially measured at a series of descending synthetic wavelengths. Every synthetic wavelength is a combination of a varied wavelength and the initial wavelength of the ECDL. The OPD is determined following a succession of optical path difference calculations, in terms of the synthetic wavelengths and measured synthetic fractional fringes. The uncertainty in the measurement is gradually reduced as the measuring synthetic wavelength is progressively reduced. The capability of VSWI is confirmed in two experiments. One is to repeat the experiment of measuring large step heights. The results reveal that the uncertainty in the measurement is approximately 80 nm when the measured height is up to 25 mm. The other one is the thickness measurement of opaque plane-parallel parts. The optical configuration is a modified double-ended interferometer. Because of the ring-like measuring arm, the test part dose not need to be wrung on a platen. The results indicate that the accuracy is about 0.5 mm for a 10 mm gauge block.
關鍵字(中) ★ 不透明平行板厚度
★ 雙端面干涉儀
★ 大階高
★ 零光程差
★ 差動式干涉儀
★ 可變式合成波長干涉術
★ 波長掃描干涉術
★ 外差干涉術
★ 絕對距離干涉術
★ 外腔二極體雷射
關鍵字(英) ★ plate thickness
★ double-ended interferometer
★ large step height
★ zero optical path difference
★ differential interferometer
★ wavelength scanning interferometry
★ variable synthetic wavelength interfrometry
★ heterodyne interferometry
★ absolute distance interferomet
論文目次 目錄 I
圖目錄 III
表目錄 V
第一章 前言 1
1.1研究動機 1
1.2背景與現況 2
1.3研究方法 3
參考文獻 5
第二章 波長可調外差干涉儀 9
2.1外差干涉術 9
2.2波長可調外差光源 15
2.3相位量測 22
2.4波長量測 25
2.5空氣折射率量測 29
2.6結論 31
參考文獻 32
第三章 波長掃描干涉術及其應用 35
3.1波長掃描干涉術 35
3.2絕對距離量測 40
3.3決定零光程差位置 45
3.4大階高量測 50
3.5結論 58
參考文獻 60
第四章 可變式合成波長干涉術及其應用 63
4.1可變式合成波長干涉術 64
4.2大階高量測 71
4.3不透明平板厚度量測 75
4.4結論 85
參考文獻 86
第五章 結論 88
5.1研究成果 88
5.2未來研究方向 90
參考文獻 92
參考文獻 1. G. R. Fowles, Introduction to Modern Optics, 2nd Ed., Holt, Rinehart and Winston, New York, 1975.
2. J. M. Bennet, D. T. McAllister, and G. M. Cabe, “ Albert A. Michelson, Dean of American Optics-Life, Contributions to Science, and Influence on Modern-Day Physics,” Appl. Opt. 12, 2253-2279, 1973.
3. “Documents Concerning the New Definition of the Metre”, Metrologia 19, 163-178, 1984.
4. T. J. Quinn, “Practical realization of the definition of the metre (1997),” Metrologia 36, 211-244, 1999.
5. N. Bobroff, “Recent advances in displacement measuring interferometry,” Meas. Sci. Technol. 4, 907-926, 1993.
6. C. Polhemus, “Two-wavelength interferometry,” Appl. Opt. 12, 2071-2074, 1973.
7. H. Matsumoto, “Synthetic interferometric distance-measuring system using a CO2 laser,” Appl. Opt. 25, 493-498, 1986.
8. D. J. Pugh and K. Jackson, “Automatic gauge block measurement using multiple wavelength interferometry,” Proc. SPIE 656, 244-250, 1986.
9. C. J. Walsh, “Measurement of absolute distance to 25 m by multiwavelength CO2 laser interferometry,” Appl. Opt. 26, 1680-1687, 1987.
10. V. Mahal and A. Arie, “Distance measurements using two frequency stabilized Nd:YAG lasers,” Appl. Opt. 35, 3010-3015, 1996.
11. S. Yokoyama, J. Ohnishi, S. Iwasaki, K. Seta, H. Matsumoto, and N. Suzuki, “Real-time and high-resolution absolute-distance measurement using a two-wavelength superheterodyne interferometer,” Meas. Sci. Technol. 10, 1233-1239, 1999.
12. R. J. Tansey, ”An absolute interferometer using a dye laser heterodyne interferometer and separation of beams,” Proc. SPIE 429, 43-54, 1983.
13. H. Kikuta, K. Iwata, and R. Nagata, “Distance measurement by the wavelength shift of laser diode light,” Appl. Opt. 25, 2976-2980, 1986.
14. Y. Zhu, H. Matsumoto, and T. O’ishi, “Arm-length measurement of an interferometer using the optical frequency scanning technique,” Appl. Opt. 30, 3561-3562, 1991.
15. G. P. Barwood, P. Gill, and W. R. C. Rowley, “High-accuracy length metrology using multiple-stage swept-frequency interferometry with laser diodes,” Meas. Sci. Technol. 9, 1036-1041, 1998.
16. C. Zhang, K. Meiners-Hagen, V. Burgarth, and A. Abou-Zied, “High accuracy absolute distance measurement within 2 m using two diode lasers,” euspen, 383-386, 2003.
17. J. Thiel, T. Pfeifer, and M. Hartmann, “Interferometric measurement of absolute distances of up to 40 m,” Measurement 16, 1-6, 1995.
18. K. H. Bechstein and W. Fuchs, “Absolute interferometric distance measurements applying a variable synthetic wavelength,” J. Opt. 29, 179-182, 1998.
19. X. Dai and K. Seta, “ High-accuracy absolute distance measurement by means of wavelength scanning heterodyne interferometry,” Meas. Sci. Technol. 9, 1031-1035, 1998.
20. J. A. Stone, A. Stejskal, and L. Howard, “Absolute interferometry with a 670-nm external cavity diode laser,” Appl. Opt. 38, 5981-5994, 1999.
21. T. Kinder and K-D Salewski, “Absolute distance interferometer with grating-stabilized tunable diode at 633 nm,” J. Opt. A: Pure Appl. Opt. 4, S364-S368, 2002.
22. I. Yamaguchi, A. Yamamoto, and M. Yano, “Surface topography by wavelength scanning interferometry,” Opt. Eng. 39, 40-46, 2000.
23. A. Yamamoto, C. C. Kuo, K. Sunouchi, S. Wada, I. Yamaguchi, and H. Tashiro, “Surface shape measurement by wavelength scanning interferometry using an electronically tuned Ti:sapphire laser,” Optical Review 8, 59-63, 2001.
24. T. Fukano and I. Yamaguchi, “Separation of measurement of the refractive index and the geometrical thickness by use of a wavelength-scanning interferometer with a confocal microscope,” Appl. Opt. 38, 4065-4073, 1999.
25. G. Coppola, P. Ferraro, M. Iodice, and S. D. Nicola, “Method for measuring the refractive index and the thickness of transparent plates with a lateral-shear wavelength-scanning interferometer,” Appl. Opt. 42, 3882-3887, 2003.
26. T. Fukano and I. Yamaguchi, “Geometrical cross-sectional imaging by a heterodyne wavelength-scanning interference confocal microscope,” Opt. Lett. 25, 548-550, 2000.
27. Y. Bitou and K. Seta, “Gauge block measurement using a wavelength scanning interferometer,” Jpn. J. Appl. Phys. 39, 6084-6088, 2000.
28. J. Y. Lee and D. C. Su, “Central fringe identification by phase quadrature interferometric technique and tunable laser diode,“ Opt. commun. 198, 333-337, 2001.
29. T. Li, R. G. May, A. Wang, and R. O. Claus, “Optical scanning extrinsic Fabry Perot interferometer for absolute microdisplacement measurement,” Appl. Opt. 36, 8858-8861, 1997.
30. F. Lexer, C. K. Hitzenberger, A. F. Fercher, and M. Kulhavy, “Wavelength tuning interferometery of intraocular distances,” Appl. Opt. 36, 6548-6553, 1997.
31. M.-K.Kim, “Tomographic three-dimensional imaging of a biological specimen using wavelength-scanning digital interference holography,” Optics Express 7, 305-310, 2000.
32. F. J. Duarte, Tunable Lasers Handbook, Academic Press, San Diego, 1995.
33. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20, 1991.
34. K. C. Harvey and C. J. Myatt, “External cavity diode laser using a grazing incidence diffraction grating,” Opt. Lett. 16, 910-912, 1991.
35. K. Liu and M. G. Littman, “Novel geometry for single mode scanning of tunable lasers,” Opt. Lett. 6, 117-118, 1981.
36. P. Hariharan, Basics of Interferometry, Academic Press, Boston, 1992.
37. J. N. Dukes and G. B. Gordon, “A two–hundred-foot yardstick with graduations every microinch,” Hewlett-Packard J. 21, 2-8, 1970.
38. G. E. Sommargren, “Optical heterodyne profilometry,” Appl. Opt. 20, 610-618, 1981.
39. C. Chou, J. C. Shyu, Y. C. Huang, and C. K. Yuan, “Common-path optical heterodyne profilometry: a configuration,” Appl. Opt. 37, 4137-4142, 1998.
40. B. K. A. Ngoi, K. Venkatakrishnan, and B. Tan, “Scanning laser differential-heterodyne interferometer for flying-height measurement,” Appl. Opt. 39, 578-584, 2000.
41. K. Petermann, Laser diode modulation and noise, Kluwer Academic Publishers, Dordrecht, 1988.
42. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1-20, 1991.
43. 施宙聰, 陳皙敦, “穩頻半導體雷射,” 科儀新知 14, 30-39, 1993.
44. R. W. Fox and L. Hollberg, “Semiconductor diode lasers,” NIST TN 1504, TN78-TN103, 1998.
45. Model 6300 user’s manual, New Focus, 2002 (www.newfocus.com).
46. Y. P. Lan, R. P. Pan, and C. L. Pan, “Mode hop free fine tuning of an external cavity diode laser with an intracavity liquid crystal cell,” Opt. Lett. 29, 1-3, 2004.
47. T. Day, M. Brownell, and I-F. Wu, “Widely tunable external cavity diode laser,” New Focus Application Note (www.newfocus.com).
48. 殷純永, 現代干涉測量技術, 天津大學, 天津, 1999.
49. F. C. Demarest, “High-resolution, high-speed, low data age uncertainty, heterodyne displacement measuring interferometer electronics,” Meas. Sci. Technol. 9, 1024-1030, 1998.
50. M. L. Meade, Lock-in amplifiers:principles and applications, P. Peregrinus on behalf of the Institution of Electrical Engineers, London, 1983.
51. R. Kneppers, “HP laser interferometer,” Vaisala News 151, 34-37, 1999.
52. HP10885A PC axis board operating and service manual, Hewlett Packard, 1993.
53. DSP lock-in amplifier model 830, Stanford Research Systems, 1999.
54. User’s manual of model 844 RF lock-in amplifier, Stanford Research Systems, 2003.
55. D. Derickson, Fiber optic test and measurement, Prentice Hall PTR, Upper Saddle River, New Jersey, 1998.
56. WA-1000 and WA-1500 wavemeter operating manual, Burliegh Instruments Inc., 1997.
57. S. H. Lu, R. H. Hsu, C. P. Lai, and C. J. Chen, “Iodine stabilized He-Ne laser at 633 nm with simple line-locking device and the intercomparison results,” CPEM, 84-85, 1996.
58. K. P. Birch and M. J. Downs, “The results of a comparison between calculated and measured values of the refractive index of air,” J. Phys. E: Sci. Instrum 21, 694-695, 1988.
59. Qui Huifu and Hou Wenmei, “Direct measurement of air refractive index using interferometric phase measuring technique,” IMEKO, 43-48, 1988.
60. 盧聖華, 張威政及張良知, “絕對式空氣折射率計之設計,” 第六屆中華民國計量學術研討會, 161-165, 1999.
61. B. Edlén, “ The refractive index of air,” Metrologia 2, 71-80, 1966.
62. K. P. Birch and M. J. Downs, “Correction to the updated Edlén equation for the refractive index of air,” Metrologia 31, 315-316, 1994.
63. N. Khélifa, H. Fang, J. Xu, P. Juncar, and M. Himbert, “Refractometer for tracking changes in the refractive index of air near 780 nm,” Appl. Opt. 37,156-161, 1998.
64. International Organization for Standardization, “Guide to the expression of uncertainty in measurement” (ISO, Geneva, Switzerland, 1995).
65. J. Potzick, “Noise averaging and measurement (or “A little noise is a good thing”),” Rev. Sci. Instrum. 70, 2038~2040, 1999.
66. G. S. Kino and S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775-3783, 1990.
67. P. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438-3441, 1993.
68. E. Ikonen, J. Kauppinen, T. Korkolainen, J. Luukkainen, and K. Riski, “Interferometric calibration of gauge block by using one stabilized laser and a white-light source,” Appl. Opt. 30, 4477-4478, 1991.
69. A. I. Kholodnykh, I. Y. Petrova, K. V. Larin, M. Motamedi, and R. O. Esenaliev, “Precision of measurement of tissue optical properties with optical coherence tomography,” Appl. Opt. 42, 3027-3037, 2003.
70. Y. J. Rao and D. A. Jackson, “Recent progress in fiber optic low-coherence interferometry,” Meas. Sci. Technol. 7, 981~999, 1996.
71. J. Y. Lee and D. C. Su, “Central fringe identification using a heterodyne interferometric technique and a tunable laser-diode,“ Opt. Commun. 128, 193-196, 1996.
72. Schott optical glass catalog.
73. H. J. Tiziani, A. Rothe, and N. Maier, “Dual-wavelength heterodyne differential interferometer for high-precision measurements of reflective aspherical surfaces and step heights,” Appl. Opt. 35, 3525-3533, 1996.
74. C. M. Wu and C. S. Su, “Nonlinearity in measurements of length by optical interferometry,” Meas. Sci. Technol. 7, 62-68, 1996.
75. Lasers and optics users manual, Hewlett Packard, 1992.
76. C. D. Burnside, Electromagnetic Distance Measurement, Collins, London, 1982.
77. J. M. Rueger, Electronic Distance Measurement, Springer-Verlag, Berlin, 1990.
78. D. J. Pugh and K. Jackson, “Automatic gauge block measurement using multiple wavelength interferometry,” Proc. SPIE 656, 244-250, 1986.
79. C. R. Tilford, “Analytical procedure for determining lengths from fractional fringes,” Appl. Opt. 16, 1857-1869, 1977.
80. C. Yin, Z. Chao, D. Lin, Y. Xu, and J. Xu, “Absolute length measurement using changeable synthetic wavelength chain,” Opt. Eng. 41, 746-750, 2002.
81. P. Hariharan and D. Sen, “New gauge interferometer,” J. Opt. Soc. Am. 49, 232-234, 1959.
82. S. Brinkmann, R. Schreiner, T. Dresel, and J. Schwider, “Interferometric testing of plane and cylindrical workpieces with computer-generated holograms,” Opt. Eng. 37, 2506-2511, 1998.
83. V. M. Khavinson, “Ring interferometer for two-sided measurement of the absolute lengths of end standards,” Appl. Opt. 38, 126-134, 1999.
84. P. de Groot, J. Biegen, J. Clark, X. C. de Lega, and D. Grigg, “Optical interferometry for measurement of the geometric dimensions of industrial parts,” Appl. Opt. 41, 3853-3860, 2002.
85. L. Denes and J. Salsbury, “Flatness, parallelism and other novel uses of grazing-incidence interferometry in precision engineering,” Proc. ASPE 11, 20-23, 1995.
86. Y. Ishii and S. Seino, “New method for interferometric measurement of gauge blocks without wringing onto a platen,” Metrologia 35, 67-73, 1998.
87. 劉惠中, 黃卯生, “以雙光路Fabry-Perot進行波長鎖定研究,” 台灣光電科技研討會論文集 I, TG1-7, 163-165, 2002.
88. R. Holzwarth, Th. Udem, T. W. Hanch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russel, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264-2267, 2000.
89. S. T. Cundiff, J. Ye, and J. L. Hall, “Optical frequency synthesis based on mode-locked lasers,” Rev. Sci. Instrum. 72, 3739-3771, 2001.
90. B. Bodermann, G. Bönsch, H. knöckel, A. Nicolaus, and E. Tiemann, “Wavelength measurements of three iodines between 780 nm and 795 nm,” Metrologia 35, 105-113, 1998.
91. Karl-Heinz Bechstein, Beate Moeller, and Klaus-Dieter Salewski, “Reference inteferometer with variable wavelength and folded measurement beam path,” U. S. Patent 5715957, 1998.
92. www.iolon.com.
指導教授 李正中(Cheng-Chung Lee) 審核日期 2004-5-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明