科目 工程數學

類組別

共2頁第1頁
*請在答案卷內作答

参考用

Problem 1 - Ordinary Differential Equations (ODEs) (20%)

A6

- (a) Find the solution for $xy'+4y = 8x^4$, y(1) = 2 (6 %)
- (b) Solve $y''+4y'+(\pi^2+4)y=0, y(\frac{1}{2})=1, y'(\frac{1}{2})=-2$ (6%)
- (c) Find the solution to the 3rd-order ODE $x^3y'''+xy'-y=x^2$. (8%)

Problem 2 - Power series & Frobenius methods (15%)

For a general **Legendre** equation $(1-x^2)y'' - 2xy' + n(n+1)y = 0$ occurs in models exhibiting spherical symmetry. Please derive the recursion relation. (5 %) Please use power series method to solve it as n=1. (10%)

Problem 3 - Laplace transform (25%)

(a) Please write down the unit step function of the following figures. (10%)

(b) Solve $y'' + 2y' + 5y = 25t - 100\delta(t - \pi)$; y(0) = -2, y'(0) = 5; δ is the direct delta function. (15%)

Problem 4 - Fourier series (10%)

Let f(x) = x for $-\pi \le x \le \pi$. Please write the Fourier series of f on $[-\pi, \pi]$ and explain the Gibbs phenomenon.

į

科目 工程數學

_類組別___ A6

共2頁第2頁 *請在答案卷內作答

Problem 5 – Linear Algebra & Vector Calculus (20%)

(a) Find eigenvalues and their corresponding eigenvectors of the matrix

$$\mathbf{C} = \begin{bmatrix} 3 & 5 & 3 \\ 0 & 4 & 6 \\ 0 & 0 & 1 \end{bmatrix} \tag{5\%}$$

- (b) For a square matrix A, show that A^{-1} exists if and only if the eigenvalues $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$ are all nonzero, and then A^{-1} has the eigenvalues $1/\lambda_1, 1/\lambda_2, 1/\lambda_3, ..., 1/\lambda_n$. (7%)
- (c) Find the surface integral of $\int_{S} \mathbf{F} \cdot \mathbf{n} \, dA$ if $\mathbf{F} = [x^3 y^3, y^3 z^3, z^3 x^3]$, S: the surface of $x^2 + y^2 + z^2 \le 25, z \ge 0$ by the divergence theorem. (8%)

Problem 6 – Complex Analysis (10%)

z = x + iy is a complex number and f(z) = u(x,y) + iv(x,y) is a complex function.

- (a) Is the function $f(z) = e^x(\cos y i\sin y)$ an analytic function? Why? (3 %)
- (b) $f(z) = \cos\left[\frac{1}{2}\pi(1+i)\right]$, transfer f(z) in the form of f(z) = u + iv and find its functional value? (3 %)
- (c) Find all solutions for the complex function $\cosh z = -1$. (4 %)

注:背面有試題