博碩士論文 983204012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.144.90.236
姓名 劉峻佑(Jiun-You Liou)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用
(Tailoring Nanostructures of Diblock Copolymers by Photochemistry and Its Applications in Spatial Control of Ag and Ag@Au Nanoparticles)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構
★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為
★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質
★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究
★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構★ 極性/非極性共溶劑退火法調控雙團鏈共聚物薄膜奈米微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究利用聚苯乙烯聚2乙烯吡啶(polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP)之甲苯溶液,用以製備一微胞薄膜於矽基板上,透過原子力顯微鏡(Atomic Force Microscopy, AFM)與低掠角小角度散射儀(Grazing Incidence Small Angle X-ray Scattering, GISAXS)進行表面形貌之定性與定量分析。隨著提高製備溶液之濃度,即增加了微胞的覆蓋率,進一步發現到薄膜上的微胞結構呈現三種階段性的特徵型態:堆疊鬆散的球狀微胞、帶狀奈米結構以及雙層微胞之堆疊。除了得到旋鍍濃度與微胞結構之間的關係外,藉由分析此微胞薄膜之結構,循序漸進地建構了一套完整的擬合模型之系統,能夠延伸應用於微胞結構範疇內之研究對象。
首先,於第三章節介紹將建構的擬合系統套用於在大氣環境下紫外光(Ultraviolet, UV)照射促使微胞模板產生光劣化反應之GISAXS動態量測實驗。從一系列的影像擬合程序中,便可取得定量化的微胞結構演化資訊,並進一步比較微胞在UV光照降解下,其側向與縱向尺度變化程度可歸納出三階段演變,依序為:異向性蝕刻、等向性蝕刻與蝕刻終點。除了結構探討外,針對光化學造成高分子之化學鍵結的斷鍵與新官能基的衍生,更利用X-射線光電子光譜(X-ray photoelectron spectroscopy, XPS)深入鑑定其衍生物的種類,並將碳譜與氮譜作一分峰之數據處理,能夠精確了解各組成的含量變化用以解釋光降解對微胞結構的影響。此外,調控不同氣氛的照光條件,如氮氣環境下,發現到能大幅度減緩光降解反應,以提高光交聯反應程度,這將有效改善微胞結構的熱性質,以提升熱裂解溫度。
除了上述的UV光處理外,在第四章節中,進一步採用了常見的表面處理方法:紫外光/臭氧(UV/ozone, UVO)處理,作用於聚苯乙烯聚4乙烯吡啶(PS-b-P4VP)微胞薄膜上,意圖利用氧原子的掺雜作用下,造成醚氧鍵與酯鍵於高分子鏈段之中,而具有網狀交聯的複雜結構。因此,可抵制外界溶劑氣氛的膨潤現象,維持於當下奈米結構之型態。除了UVO處理的交聯效果外,再添加由上至下(top-down)的製程概念,即用以光罩(masks)達成區域性的交聯反應進而展現UVO lithography的技術,可任意調控任一奈米結構型態之區域分布。此外,更進一步地整合四種要素:UVO lithography、溶劑浸潤(solvent immersion, SI)、溶劑退火(solvent vapor annealing, SVA)與逐層沉積(layer by layer deposition),可實現具有相異奈米結構型態分布的雙層薄膜。
第五章節,在操縱銀粒子陣列的實驗中,為了製備高碳餘率的碳化模板,我們由上述研究奠定了模板結構與光化學關係之中,選擇一最適化的光交聯反應之實驗條件,將PS-b-P2VP微胞薄膜進行了氮氣環境下的光照處理,隨後於惰性氣體下(argon)在430 oC中進行碳化反應用以製備碳化模板。藉由物理氣相沉積(physical vapor disposition, PVD)方式蒸鍍一層銀粒子在碳化模板上,利用熱回火誘使銀粒子產生重組現象,透過碳化模板的表面差異,促使銀粒子朝向碳材區域產生遷移,達到誘導陣列的效果。銀粒子遷移過程中除了藉助FE-SEM觀察外,也利用GISAXS進行動態量測實驗。
最後,透過PVD製備的銀粒子可由賈凡尼置換反應(galvanic replacement reaction, GRR)合成出合金金屬的奈米粒子。此外,我們也仿照常見的微胞合成金屬粒子的方法,將銀氨錯離子裝填於PS-b-P2VP微胞內製備銀粒子陣列模板。兩種製備的銀粒子均作為待置換的金屬,利用含有四氯金酸的乙醇與水溶液,以及氫氧化鈉或碳酸鉀中和的四氯金酸溶液,進行置換反應用以合成金銀合金的奈米粒子。在四種四氯金酸溶液之中,由於碳酸鉀中和的氯金酸鹽溶液(K-gold),其氫氧化金具有較高的還原電位,因此最能夠達到具有空殼結構的金銀合金奈米粒子。
摘要(英) In Chapter 2, the lateral order and self-organized morphology of diblock copolymer polystyrene-block-poly(2-vinylpyridine), PS-b-P2VP, micelles on silicon substrates (SiOx/Si) is reported in the thesis. The surface morphology was investigated by grazing-incidence small-angle X-ray scattering (GISAXS) and atomic force microscopy (AFM). Upon progressively increased surface coverage with increasing concentration, loosely packed spherical micelles, ribbon-like nanostructures, and a second layer of spherical micelles were obtained sequentially. Afterwards, model simulations were constructed to analyze the 2D GISAXS patterns. The quantitative data analysis of GISAXS provides more details about the shape, dimension, and size distribution of micelles at different surface coverage densities on SiOx/Si.
In Chapter 3, the structural evolution of the PS-b-P2VP micellar film was investigated during UV exposure (UVE) treatment in air by in-situ GISAXS characterization and model simulations. This result indicates that three stages of structural change were identified: anisotropic etching, isotropic etching and etching termination. Quantitative analysis of carbon- and nitrogen-containing functional groups was probed by X-ray photoelectron spectroscopy (XPS). The structural evolutions of micelles induced by photo-oxidation and photo-degradation at three different stages of UVE in air were detailed and interpreted on basis of the XPS analysis. On the other hand, UVE irradiation was also imposed on PS-b-P2VP micelles in nitrogen (N2) for comparison. In N2, the cross-linking reaction was dominant over chain scission so that the thermal property of micelles was significantly improved.
In Chapter 4, a study worked on the stabilization of nanodomains within the thin films comprised of PS-b-P4VP micelles with UV/ozone (UVO) exposure, by which the swelling and shrinking for the nanostructures during solvent vapor annealing (SVA) could be inhibited. Upon selective stabilization of nanodomains by UVE irradiation through a mask, the film can concurrently have different types of nanostructures packed with a pattern defined by the mask. Furthermore, four crucial factors involving UVO lithography, solvent immersion (SI), SVA and layer by layer (LbL) deposition were combined to develop a feasible method of fabricating three-dimensional nanostructures.
In Chapter 5, a study focuses on the arrays of Ag NPs tailored by the spatial arrangement of nanostructured carbons. First, thin films of monolayer of PS-b-P2VP micelles with a hexagonal array were prepared by spin coating on SiOx/Si. Then UVE in N2 was implemented to stabilize PS-b-P2VP micellar films. Nanostructured carbons with hexagonal order were obtained by pyrolysis of the UVE-exposed films at 430 oC in argon (Ar) for 1 h. The top of the carbon templates was capped with a uniform Ag layer by thermal vapor deposition and then the specimens were subjected to thermal annealing at high temperatures. According to the different compatibility of silver NPs on top of carbons and SiOx/Si, the Ag NPs preferentially migrate onto the carbons. As a result, the spatial order of the Ag NPs could be controlled by the carbon templates. Ex-situ FE-SEM and in-situ GISAXS characterizations were used to analyze the structural evolution of the Ag NPs during thermal annealing.
In the final chapter, the ordered arrays of Ag NPs can be further used as sacrificial metals to synthesize bimetallic Ag-Au NPs through the galvanic replacement reaction (GRR). In addition to the above mentioned Ag NPs, a method of using BCPs micelles was also demonstrated as an encapsulated container to fabricate the Ag NPs. Furthermore, a array of bimetallic Ag-Au NPs using GRR with four types of precursor solutions was synthesized from the sacrificial Ag NPs based on BCPs and carbon templates, involving HAuCl4 ethanol solution, acidic and neutralized HAuCl4 aqueous solution and the potassium-containing basic solution of gold salt (K-gold). Among them, the K-gold solution is an appropriate agent to deposit the second metal due to the high reduction potential of the gold hydroxide.
關鍵字(中) ★ 雙團鏈共聚物
★ 紫外光
★ 銀
★ 低掠角小角度散射
關鍵字(英) ★ Block copolymer
★ UV
★ silver
★ GISAXS
論文目次 摘要 i
Abstract iii
Contents vi
List of Figures x
List of Supporting Figures xx
List of Tables xxiv
Chapter 1 1
Preliminary study on the block copolymer thin films 1
1.1 Introduction 1
1.2 Problems to be solved 5
1.3 Organization of this thesis 7
1.4 Rreferences 9
Chapter 2 13
Lateral Order and Self-organized Morphology of Diblock Copolymer Micelles on SiOx/Si by Spin-coating from Toluene 13
Abstract 13
2.1 Introduction 14
2.2 Experimental Section 17
2.2.1 Materials and Sample Preparation 17
2.2.2 Apparatus and Characterization 17
2.2.3 Modeling of GISAXS data 19
2.3 Results 21
2.3.1 Surface morphology of PS-b-P2VP micelles as spun from toluene onto SiOx/Si 21
2.3.2 Theoretical modeling of 2D GISAXS patterns 24
2.3.3 Experimental and simulated GISAXS patterns of micellar films on SiOx/Si 31
2.3.4 SAXS characterization for PS-b-P2VP micelles in toluene 42
2.4 Summary 45
2.5 References 46
Chapter 3 50
The Evolution of Micellar Films of PS-b-P2VP diblock Copolymer during UV exposure (UVE) Treatment 50
Abstract 50
3.1 Introduction 52
3.2 Experimental Section 55
3.2.1 Materials and Sample Preparation 55
3.2.2 Apparatus and Characterization 56
3.3 Results 58
3.3.1 AFM height topographic images of micellar films after UV exposure (UVE) of various time periods in air 58
3.3.2 In-situ GISAXS measurement of micellar films after UVE for various periods in air 63
3.3.3 The mechanism of the photochemical reaction through UVE in air 73
3.3.4 XPS spectra of micellar films after UV E for various periods in air 78
3.3.5 Static contact angle (CA) of water on micellar films with various duration of UVE in air 85
3.3.6 AFM measurement of micellar films after UVE for various periods in N2 87
3.3.7 GISAXS measurement of micellar films after UVE for various periods in N2 92
3.3.8 XPS spectra of micellar films after UVE for various periods in N2 97
3.3.9 Static contact angle (CA) of water on micellar films with various duration of UVE in N2 103
3.4 Summary 105
3-5 References 107
Chapter 4 111
The Morphological Control of Micellar Films of PS-b-P4VP diblock Copolymer through UVO Lithography 111
Abstract 111
4.1 Introduction 113
4.2 Experiment section 116
4.2.1 Materials 116
4.2.2 Film Preparation and Annealing 116
4.2.3 Procedures of morphological control for micellar films 117
4.2.4 Characterization 120
4.3 Results 121
4.3.1 UVO mechanism and derivatives formation 121
4.3.2 XPS spectra of micellar films after UVO treatment for various periods 128
4.3.3 XPS spectra of surface-reconstructed micellar films after UVO exposure for various periods 135
4.3.4 Static contact angle (CA) of water on micellar films of nanosphere and nanopore structures with various duration of UVO treatment 142
4.3.5 AFM measurement of micellar films after UVO exposure for various periods 144
4.3.6 Definition of spatial distribution for two types of nanostructures through UVO exposure and SVA process 148
4.3.7 Definition of spatial distribution for three types of nanostructures through UVO exposure and SVA process 155
4.3.8 Definition of spatial distribution for four types of nanostructures through UVO exposure and SVA process 164
4.3.9 The vertical construction method of micellar films through UVO exposure and immersion process 168
4.4 Summary 175
4.5 References 177
Chapter 5 182
Dewetting-induced the spatial arrangement of Ag NPs on a Graphitic carbon template through thermal annealing process 182
Abstract 182
5.1 Introduction 184
5.2 Experimental Section 187
5.2.1 Materials and Sample Preparation 187
5.2.2 Apparatus and Characterization 188
5.3 Results 190
5.3.1 AFM topographic images of nanostructured carbons 190
5.3.2 GISAXS characterization of nanostructured carbons 193
5.3.3 Raman spectral analysis of graphitic carbons 196
5.3.4 UV-vis spectra of Ag NPs on carbon templates 201
5.3.5 SEM characterization of Ag NPs with thermal annealing on carbon templates 205
5.3.6 GISAXS characterization of Ag NPs with thermal annealing on carbon templates 218
5.4 Summary 226
5.5 References 227
Chapter 6 232
Growth of Ag@Au core-shell NPs through Galvanic replacement reaction on well-defined templates 232
Abstract 232
6.1 Introduction 234
6.2 Experimental Section 235
6.2.1 Materials and Sample Preparation 235
6.2.2 Apparatus and Characterization 236
6.3 Results 238
6.3.1 Synthesis of an ordered array of Ag NPs through block copolymers (BCPs) as an encapsulated container 238
6.3.2 Synthesis of bimetallic Ag-Au nanoparticles from the Ag NPs synthesized by BCPs through galvanic replacement reaction (GRR) 246
6.3.3 Synthesis of bimetallic Ag-Au nanoparticles from the template with dewetted Ag NPs through GRR 256
6.4 Summary 261
6.5 References 263
Chapter 7 267
Conclusions 267
Chapter 8 271
Further work 271
參考文獻 1. Bates, F.S. and G.H. Fredrickson, Block Copolymer Thermodynamics: Theory and Experiment. Annual Review of Physical Chemistry, 1990. 41(1): p. 525-557.
2. Discher, B.M., et al., Polymersomes: Tough Vesicles Made from Diblock Copolymers. Science, 1999. 284(5417): p. 1143-1146.
3. Zhang, L. and A. Eisenberg, Multiple Morphologies of ”Crew-Cut” Aggregates of Polystyrene-b-poly(acrylic acid) Block Copolymers. Science, 1995. 268(5218): p. 1728-1731.
4. Won, Y.-Y., H.T. Davis, and F.S. Bates, Giant Wormlike Rubber Micelles. Science, 1999. 283(5404): p. 960-963.
5. Pochan, D.J., et al., Toroidal Triblock Copolymer Assemblies. Science, 2004. 306(5693): p. 94-97.
6. Roman, G., M. Martin, and P.S. Joachim, Block copolymer micelle nanolithography. Nanotechnology, 2003. 14(10): p. 1153.
7. Spatz, J.P., et al., Ordered Deposition of Inorganic Clusters from Micellar Block Copolymer Films. Langmuir, 1999. 16(2): p. 407-415.
8. Selvan, T., et al., Gold–Polypyrrole Core–Shell Particles in Diblock Copolymer Micelles. Advanced Materials, 1998. 10(2): p. 132-134.
9. Boontongkong, Y. and R.E. Cohen, Cavitated Block Copolymer Micellar Thin Films:  Lateral Arrays of Open Nanoreactors. Macromolecules, 2002. 35(9): p. 3647-3652.
10. Yun, S.-H., et al., Tunable Magnetic Arrangement of Iron Oxide Nanoparticles in Situ Synthesized on the Solid Substrate from Diblock Copolymer Micelles. Langmuir, 2005. 21(14): p. 6548-6552.
11. Cho, J., et al., Nanoporous Block Copolymer Micelle/Micelle Multilayer Films with Dual Optical Properties. Journal of the American Chemical Society, 2006. 128(30): p. 9935-9942.
12. Day, J.K., et al., Nanostructure-Mediated Launching and Detection of 2D Surface Plasmons. ACS Nano, 2010. 4(12): p. 7566-7572.
13. Lee, J.Y., et al., Plasmonic nano-necklace arrays via reconstruction of diblock copolymer inverse micelle nanotemplates. Soft Matter, 2011. 7(1): p. 57-60.
14. Lee, J.Y., et al., Controlling the composition of plasmonic nanoparticle arrays via galvanic displacement reactions on block copolymer nanotemplates. Chemical Communications, 2011. 47(6): p. 1782-1784.
15. Lee, W., et al., Self-Assembled SERS Substrates with Tunable Surface Plasmon Resonances. Advanced Functional Materials, 2011. 21(18): p. 3424-3429.
16. Liu, Y., et al., Photochemical fabrication of hierarchical Ag nanoparticle arrays from domain-selective Ag+-loading on block copolymer templates. Chemical Communications, 2009(43): p. 6566-6568.
17. Mistark, P.A., et al., Block-Copolymer-Based Plasmonic Nanostructures. ACS Nano, 2009. 3(12): p. 3987-3992.
18. Wang, Y., et al., Nanostructured Gold Films for SERS by Block Copolymer-Templated Galvanic Displacement Reactions. Nano Letters, 2009. 9(6): p. 2384-2389.
19. Mössmer, S., et al., Solution Behavior of Poly(styrene)-block-poly(2-vinylpyridine) Micelles Containing Gold Nanoparticles. Macromolecules, 2000. 33(13): p. 4791-4798.
20. Spatz, J.P., et al., Nanomosaic Surfaces by Lateral Phase Separation of a Diblock Copolymer. Macromolecules, 1997. 30(13): p. 3874-3880.
21. Spatz, J.P., et al., Order−Disorder Transition in Surface-Induced Nanopattern of Diblock Copolymer Films. Macromolecules, 1999. 33(1): p. 150-157.
22. Spatz, J.P., S. Sheiko, and M. Möller, Ion-Stabilized Block Copolymer Micelles:  Film Formation and Intermicellar Interaction. Macromolecules, 1996. 29(9): p. 3220-3226.
23. Meiners, J.C., et al., Adsorption of Block-Copolymer Micelles from a Selective Solvent. Macromolecules, 1997. 30(17): p. 4945-4951.
24. Meiners, J.C., et al., Chemically functionalized surfaces from ultrathin block‐copolymer films. Journal of Applied Physics, 1996. 80(4): p. 2224-2227.
25. Meiners, J.C., et al., Two-dimensional micelle formation of polystyrene-poly(vinylpyridine) diblock copolymers on mice surfaces. Applied Physics A, 1995. 61(5): p. 519-524.
26. Li, Z., et al., Self-Ordering of Diblock Copolymers from Solution. Journal of the American Chemical Society, 1996. 118(44): p. 10892-10893.
27. Krishnamoorthy, S., et al., Tuning the Dimensions and Periodicities of Nanostructures Starting from the Same Polystyrene-block-poly(2-vinylpyridine) Diblock Copolymer. Advanced Functional Materials, 2006. 16(11): p. 1469-1475.
28. Renaud, G., R. Lazzari, and F. Leroy, Probing surface and interface morphology with Grazing Incidence Small Angle X-Ray Scattering. Surface Science Reports, 2009. 64(8): p. 255-380.
29. Lazzari, R., IsGISAXS: a program for grazing-incidence small-angle X-ray scattering analysis of supported islands. Journal of Applied Crystallography, 2002. 35(4): p. 406-421.
30. Liou, J.-Y. and Y.-S. Sun, Monolayers of Diblock Copolymer Micelles by Spin-Coating from o-Xylene on SiOx/Si Studied in Real and Reciprocal Space. Macromolecules, 2012. 45(4): p. 1963-1971.
31. Goycoolea, F.M., et al., Effect of Chemical Crosslinking on the Swelling and Shrinking Properties of Thermal and pH-Responsive Chitosan Hydrogels. Macromolecular Bioscience, 2003. 3(10): p. 612-619.
32. Winter, H.H. and F. Chambon, Analysis of Linear Viscoelasticity of a Crosslinking Polymer at the Gel Point. Journal of Rheology (1978-present), 1986. 30(2): p. 367-382.
33. Yang, S.-l., et al., Thermal and mechanical properties of chemical crosslinked polylactide (PLA). Polymer Testing, 2008. 27(8): p. 957-963.
34. Yousif, E. and R. Haddad, Photodegradation and photostabilization of polymers, especially polystyrene: review. SpringerPlus, 2013. 2(1): p. 398.
35. Wang, Y., et al., Nanopatterned Carbon Films with Engineered Morphology by Direct Carbonization of UV-Stabilized Block Copolymer Films. Nano Letters, 2008. 8(11): p. 3993-3997.
36. Klein, R.J., D.A. Fischer, and J.L. Lenhart, Systematic Oxidation of Polystyrene by Ultraviolet-Ozone, Characterized by Near-Edge X-ray Absorption Fine Structure and Contact Angle. Langmuir, 2008. 24(15): p. 8187-8197.
37. Vig, J.R., UV/ozone cleaning of surfaces. Journal of Vacuum Science & Technology A, 1985. 3(3): p. 1027-1034.
38. Teare, D.O.H., C. Ton-That, and R.H. Bradley, Surface characterization and ageing of ultraviolet–ozone-treated polymers using atomic force microscopy and x-ray photoelectron spectroscopy. Surface and Interface Analysis, 2000. 29(4): p. 276-283.
39. Chang, C.-Y., P.-J. Wu, and Y.-S. Sun, Kinetically controlled self-assembly of monolayered micelle films of P(S-b-4VP) on bare and PS-grafted substrates. Soft Matter, 2011. 7(19): p. 9140-9147.
40. Tang, C., et al., Evolution of Block Copolymer Lithography to Highly Ordered Square Arrays. Science, 2008. 322(5900): p. 429-432.
41. Sidorenko, A., et al., Ordered Reactive Nanomembranes/Nanotemplates from Thin Films of Block Copolymer Supramolecular Assembly. Journal of the American Chemical Society, 2003. 125(40): p. 12211-12216.
42. Ikkala, O. and G. ten Brinke, Functional Materials Based on Self-Assembly of Polymeric Supramolecules. Science, 2002. 295(5564): p. 2407-2409.
43. Ayoubi, M.A., et al., Micro- and nanophase separations in hierarchical self-assembly of strongly amphiphilic block copolymer-based ionic supramolecules. Soft Matter, 2013. 9(5): p. 1540-1555.
44. Zhang, S., et al., Rapid and Versatile Construction of Diverse and Functional Nanostructures Derived from a Polyphosphoester-Based Biomimetic Block Copolymer System. Journal of the American Chemical Society, 2012. 134(44): p. 18467-18474.
45. Wang, J., et al., Stable Polymer Micelles Formed by Metal Coordination. Macromolecules, 2012. 45(17): p. 7179-7185.
46. Sageshima, Y., et al., Fabrication and Modification of Ordered Nanoporous Structures from Nanophase-Separated Block Copolymer/Metal Salt Hybrids. Langmuir, 2012. 28(50): p. 17524-17529.
47. Acharya, H., et al., Tunable Surface Plasmon Band of Position Selective Ag and Au Nanoparticles in Thin Block Copolymer Micelle Films. Chemistry of Materials, 2009. 21(18): p. 4248-4255.
48. Son, J.G., et al., Placement Control of Nanomaterial Arrays on the Surface-Reconstructed Block Copolymer Thin Films. ACS Nano, 2009. 3(12): p. 3927-3934.
49. Onses, M.S., et al., Site-Specific Placement of Au Nanoparticles on Chemical Nanopatterns Prepared by Molecular Transfer Printing Using Block-Copolymer Films. Advanced Functional Materials, 2011. 21(16): p. 3074-3082.
50. Kamcev, J., et al., Chemically Enhancing Block Copolymers for Block-Selective Synthesis of Self-Assembled Metal Oxide Nanostructures. ACS Nano, 2012. 7(1): p. 339-346.
51. Allen, J.E., et al., Self-assembly of single dielectric nanoparticle layers and integration in polymer-based solar cells. Applied Physics Letters, 2012. 101(6): p. -.
52. Kim, J.Y., et al., Flexible and Transferrable Self-Assembled Nanopatterning on Chemically Modified Graphene. Advanced Materials, 2013. 25(9): p. 1331-1335.
53. Oldenburg, S.J., et al., Nanoengineering of optical resonances. Chemical Physics Letters, 1998. 288(2–4): p. 243-247.
54. Oldenburg, S.J., et al., Infrared extinction properties of gold nanoshells. Applied Physics Letters, 1999. 75(19): p. 2897-2899.
55. Vongsavat, V., et al., Ultrasmall Hollow Gold–Silver Nanoshells with Extinctions Strongly Red-Shifted to the Near-Infrared. ACS Applied Materials & Interfaces, 2011. 3(9): p. 3616-3624.
56. Hu, M., et al., Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chemical Society Reviews, 2006. 35(11): p. 1084-1094.
57. Sun, Y., B. Mayers, and Y. Xia, Metal Nanostructures with Hollow Interiors. Advanced Materials, 2003. 15(7-8): p. 641-646.
58. Sohn, B.-H., et al., Nanopatterns by Free-Standing Monolayer Films of Diblock Copolymer Micelles with in Situ Core−Corona Inversion. Journal of the American Chemical Society, 2001. 123(50): p. 12734-12735.
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2015-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明