參考文獻 |
[1] J. J. Thomson, Notes on Recent Researches in Electricity and Magnetism. (Clarendon, Oxford, 1893)
[2] Lord Raleigh, “On the passage of electric waves through tubes, or the vibration of dielectric cylinders,” Phil. Mag., 43, 125 (1897).
[3] D. Hondros and P. Debye, “Elektromagnrtische Wellen an dielektrischen Drähten,” Ann. d. Phys., 32, 465 (1910).
[4] K. C. Kao, and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. IEE, 113, 1151 (1966).
[5] N. J. Doran and K. J. Blow, “Cylindrical Bragg Fibers: A Design and Feasiblity Study For Optical Communications,” J. Lightwave Technol., LT-1, 588 (1983).
[6] S. S. Lo, M. S. Wang and C. C. Chen, “Semiconductor hollow optical waveguides formed by onmi-directional reflectors” Opt. Express, 12, 6589 (2004).
[7] H. K. Chiu, F. L. Hsiao, C. H. Chan and C. C. Chen, “Compact and low-loss bent hollow waveguides with distributed Bragg reflector,” Opt. Express, 16, 15069 (2008).
[8] J. Scheuer, G. T. Paloczi, J. K. S. Poon and A. Yariv, “Coupled Resonator Optical Waveguides: Towards Slowing and Storing of Light”, Opt. Photon. News, 16, 36 (2005).
[9] J. Scheuer, “Slow propagation of externally injected light pulses in coupled semiconductor laser array,” Europhysics. Lett., 77, 44004 (2007).
[10] J. Scheuer, “Slow light rotation sensors and Gyroscopes,” Proc. Of SPIE, 7579, 757919 (2010).
[11] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol., 15, 998 (1997).
[12] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett., 29, 2867, (2004).
[13] M. Terrel, Michel J. F. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser & Photon. Rev., 3, 465 (2009).
[14] A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Comm., 233, 107, (2004).
[15] Jacob Scheuer and Amnon Yariv, “Sagnac effect in coupled resonator slow light waveguide structures,” Phys. Rev. Lett., 96, 053901 (2006).
[16] J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonator in chalcogenide glass for sensing,” Opt. Lett., 33, 2500 (2008).
[17] L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolated optical isolator applications,” Proc. Of SPIE, 7604, 760406 (2010).
[18] E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelength,” Opt. Express, 18, 2127 (2010).
[19] K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express, 15, 7610 (2007).
[20] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propag, 14, 302 (1966).
[21] H. T. Chien, “2x2 Photonic Crystal Beamsplitter,” Institute of Optical Science, National Central University, 2004.
[22] A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” Baker & Taylor Books, 2000.
[23] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185 (1994).
[24] M. Koshiba, Y. Tsuji and S. Sasaki, “High-performance adsorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microwave Compon. Lett., 11, 152 (2001).
[25] 欒丕剛, 陳啟昌, 光子晶體-從蝴蝶翅膀到奈米光子學, 第二版, 五南圖書出版社股份有限公司, 2006.
[26] O. Paniter, J. Vuckovic and A, Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B, 16, 275 (1999).
[27] O. Svelto and D. C. Hanna, Principles of Laser, Third Edition, Springer.
[28] The University of Texas. “Oscillations and Waves,” http://farside.ph.utexas.edu/teaching/315/Waves/node10.html#e3.28x
[29] R. Schinzinger and P. A. A. Laura, Conformal Mapping: Method and Application, First Edition, Dover.
[30] 伍茂仁, “Equivalent Waveguide Theory Based on Conformal Mapping Method : Design and Analysis of Ideal Optical Waveguides,” 國立中央大學, 光電科學研究所, 2001.
[31] K. Kawano and T. Kitoh, INTRODUCTION TO OPTICAL WAVEGUIDE ANALYSIS, John Wily & Sons.
[32] K. Okamoto, Fundamentals of Optical Waveguide, First edition, Academic.
[33] C. R. Pollock and M. Lipson, INTEGRATED PHOTONICS, Kluwer Academic.
[34] H. Kogelnik and R. V. Schmidt, “Switched directional couplers with alternating ,” IEEE J. Quantum Electron., QE-12, 396 (1976).
[35] S. Kurazono, K. Iwasaki and N. Kumagai, “New optical modulator consisting of coupled optical waveguide,” Electron. Commun. Jap., 55, 103 (1972).
[36] H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys., 44, 3257 (1973).
[37] S. Somekh, E. Garmire, H. L. Gavin and R. G. Hunsperger, “Channel optical waveguides and directional couplers in GaAs-Imbedded and ridged,” Appl. Optics, 13, 327 (1974).
[38] J. M. Hammer, “Modulation and switching of light in dielectric waveguides,” in Integrated Optics, 7, 140 (1975).
[39] K. T. Koai and P. L. Liu, “Digital and quasi-linear electroopic modulators synthesized from directional couplers,” IEEE J. Quantum Electron., QE-22, 2191 (1986).
[40] G. L. Yip and J. Finak, “Directional-coupler power divider by two step K+-ion exchange,” Opt. Lett., 9, 423 (1984).
[41] F. Gonthier, D. Richard, S. Lacroix and K. Bures, “Wavelength-flattened 2x2 splitters made of indentical single-mode fibers,” Opt. Lett. 16, 1201 (1991).
[42] W.-P. Huang., “Coupled-mode theory for optical waveguides: An overview,” J. Opt. Soc. Amer. A, 11, 963 (1994).
[43] A. Kumar, A. N. Kaul and K. Ghatak, “Prediction of coupling glength in a rectangular-core directional coupler: an accurate analysis,” Opt. Lett., 10, 86 (1985).
[44] H. C. Cheng and R. V. Ramaswamy, “Determination of the Coupling Length in Directional Couplers from Spectral Response,” IEEE Photon. Technol. Lett., 2, 823 (1990).
[45] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071 (1969).
[46] M. Heiblum and J. H. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” IEEE J. Quantum Electron., QE-11, 75 (1975).
[47] K. Thyagarajan, M. R. Shenoy and A. K. Ghatak, “Accurate numerical method for the calculation of bending loss in optical waveguide using a matrix approach,” Opt. Lett. 12, 296 (1987).
[48] J. S. Gu, P. A. Besse, and H. Melchior, “Novel method for analysis of curved optical rib-waveguides,” Electron. Lett., 25, 278 (1989).
[49] M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol., 16, 1433 (1998).
[50] W. Berglund and A. Gopinath, “WKB analysis of bend losses in optical waveguides,” J. Lightwave Technol., 18, 1161 (2000).
[51] D. P. Cai, C. C. Chen, C. C. Lee and T. D. Wang, “Study of Coupling Length of Concentrically Curved Waveguides,” IEEE Photon. J., 4, 80 (2012).
[52] H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE, 62, 1044 (1974).
[53] D. P. Cai, J. H. Lu, C. C. Lee, and C. C. Chen, “High Q-factor microring resonator wrapped by the curved waveguide,” (submitted to Scientific Reports.)
[54] K. P. Yap, A. Delage, J. Lapointe, B. Lamontagne, J. H. Schmid, P. Waldron, B. A. Syrett and S. Janz, “Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge Waveguides,” J. Lightwave Technol., 27, 3999 (2009).
[55] G. Pandraud, E. M. Balbas, C. K. Yang and P. J. French, “Experimental Characterization of Roughness Induced Scattering Losses in PECVD SiC Waveguides,” J. Lightwave Technol., 29, 744 (2011).
[56] F. Grillot, L. Vivien, S. Laval, D. Pascal and E. Cassan, “Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides,” IEEE Photon. Technol. Lett., 16, 1661 (2004).
[57] B. Su, C. Wang, Q. Kan and H. Chen, “Compact Silicon-on-Insulator Dual-Microring Resonator Optimized for Sensing,” J. Lightwave Technol., 29, 1535 (2011).
[58] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout and R. Baets, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett., 16, 1328 (2004).
[59] A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett., 15, 921 (2003).
[60] M. Soltani, S. Yegnanarayanan, Q. Li and A. Adibi, “Systematic Engineering of Waveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment,” IEEE J. Quantum Electron., 46, 1158 (2010).
[61] Joyce K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B, 21, 1665 (2004).
[62] B. E. little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Jhonson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photon. Technol. Lett., 16, 2263 (2004).
[63] A. Yariv “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett., 36, 321 (2000).
[64] L. F. Stokes, M. Ghodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett., 7, 288 (1982).
[65] J. Niehusmann, A.Vorckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator, ” Opt. Lett., 29, 2861 (2004).
[66] I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett., 97, 081108 (2010).
[67] A. C. Turner, M. A. Foster, A. L. Gaeta and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express, 16, 4881 (2008).
[68] A. Belarouci, K. B. Hill, Y. Liu, Y. Xiong, T. Chang, and A. E. Craig, “Design and modeling of waveguide-coupled microring resonator,” J. Lumin., 94-95, 35 (2001).
[69] M. Forst, J. Niehusmann, T. Plotzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, “High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators,” Opt. Lett., 32, 2046 (2007).
[70] H. K. Hsiao and K. A. Winick, “Planar glass waveguide ring resonators with gain,” Opt. Express, 15, 17783 (2007).
[71] V. M. Menon, W. Tong, and S. R. Forrest, “Control of Quality Factor and Critical Coupling in Microring Resonators Through Integration of a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett., 16, 1343 (2004).
[72] H. Cai, and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices,” Opt. Lett., 17, 2855 (2010).
[73] M. K. Chin, “Polarization dependence in waveguide-coupled micro-resonators,” Opt. Express, 11, 1724 (2003).
[74] J. T. Robinsor, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296 (2008).
[75] http://refractiveindex.info.
[76] D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin and T. J. Yen, “Compact pulley-type microring resonator with high quality factor,” Appl. Phys. Express, 7, 112201 (2014).
[77] B. Howley, X. Wang, R. T. Chen, and Y. Chen, “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys. 100, 023114 (2006).
|