博碩士論文 962406012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:13.59.87.145
姓名 蔡東坡(Dong-Po Cai)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 高品質因子滑輪式環形共振腔
(Pulley-Type Microring Resonator with High Quality Factor)
相關論文
★ 氮化鎵微光學元件之研究★ 二維雙輸入雙輸出光子晶體分光器
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 新型中空多模干涉分光器
★ 表面電漿對於半導體發光元件光萃取效率的影響之探討★ 半導體光子晶體雷射之研究
★ 新型中空光波導研製與應用★ 動態波長分配技術在乙太被動光纖網路的應用
★ 禁止頻帶材料的光學與聲波特性研究★ 漸變式光子晶體透鏡研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本研究中,我們提出一個設計及優化環型共振腔的方法。首先,在環形共振腔外圍包裹一彎曲載波波導可以形成滑輪型耦合器並有效降低環形共振腔的彎曲損耗。滑輪型耦合器因具有較長的耦合區域可以減少環形共振腔的輻射損耗進而提高Q值。第二,載波波導與環形共振腔之間的傳遞常數愈大愈可以將光儲存在環形共振腔中。第三,可以藉由調整載波波導的寬度快速達到臨界耦合以增加Q值。根據以上幾點,我們比較其他種類的環形共振腔可以得知滑輪型環形共振腔可以提供較高的Q值。
此外,為了定義滑輪型耦合器的耦合長度,我們提出以保角映射法結合亥姆霍茲方程式來計算耦合長度。而此方法與有限時域差分法所計算出的耦合長度有很好的一致性。
為了實現高Q值的積體化元件,我們使用電子束微影及反應式離子蝕刻將滑輪式環形共振腔及光柵耦合器定義在SOI晶片上。其中光柵耦合器可藉由繞射原理將光引導至載波波導中,進而再由載波波導耦合至環形共振腔中。經由量測可以得到的Q值約173000。
目前文獻中,具有高Q值的滑輪型環形共振腔其半徑約在20 um,而Q值約落在20000 到 600000 之間,此外為了提高Q值,可以藉由photoresist reflow process 使波導側壁較為光滑以減少散射損耗或是藉由覆蓋一層包覆層減少元件的光損耗。然而就積體化而言,元件在能保持相對優良的性能之下,元件的體積能愈小愈好。因此在本文中提出具有高Q值(173000)和小體積(半徑4.43 um)的滑輪式環形共振腔,藉由改變載波波導的寬度可以在不增加環形共振腔半徑的前提之下而提高Q值。相較之下,本文提出滑輪式環形共振腔的半徑約為上述文獻的22.5%,且具有相當高的Q值,因此滑輪式環形共振腔是相當適合積體化的光學元件。
摘要(英) In this thesis, the microring resonators have been studied to propose the guidelines to design the high Q-factor microring resonators. First, by wrapping the curved waveguide around the microring to form the pulley coupler, the bending loss can be effectively decreased. The longer interaction length of coupling region such as the concentrically curved waveguides is helpful to decrease the radiation loss of microring to improve the Q-factor of resonator. Second, the large difference of propagation constant between the microring and the bus waveguide can maintain the propagating light in the microring. Third, the critical coupling can be optimized by adjusting the bus waveguide width to increase the Q-factor. The reasons mentioned above and the obtained results by comparing the performance of the different type ring resonators show that the pulley-type microring can provide higher Q-factor.
Besides, in order to define the coupling length of the pulley coupler, the conformal transformation method based on Helmholtz equation is employed to estimate the coupling length of the concentrically curved waveguides. The coupling length obtained by the method proposed in this thesis has a good agreement with the finite-difference time-domain method.
For demonstrating the performance of the designed high Q microring resonator, the pulley-microring resonator and the grating coupler are fabricated on the silicon-on-insulator substrate by using the E-beam lithography and the reactive-ion etching. The grating coupler is adopted to guide the light into the pulley-type microring resonator. The Q-factor can be obtained as high as 173000.
In the literature, the microring resonator with the radius of 20 um constructed by the pulley coupler, such that pulley-type microring resonator can provide the high Q-factor from 20000 to 600000 by using the reflow process or covering the cladding layer. However, the radius of microring resonator is too long. In this thesis, the pulley-type microring resonator with high Q-factor of 173000 and with the smaller radius of 4.43 um is proposed and demonstrated. The high Q-factor pulley-type microring resonator is obtained by adjusting the bus waveguide width. This indicates that the pulley-type microring resonator is suitable for the miniaturization of the optical integrated circuit.
關鍵字(中) ★ 環形共振腔
★ 品質因子
★ 波導
★ 臨界耦合
關鍵字(英) ★ microring resonator
★ Q-factor
★ waveguide
★ critical coupling
論文目次 Abstract.............................................i
摘要..................................................iii
謝誌..................................................iv
Contents..............................................v
List of Figure Captions...............................vii
List of Tables Captions...............................xii
Chapter 1 Introduction................................1
1.1 Waveguide.....................................4
1.2 Microcavity and resonator.....................7
1.3 Summary.......................................12
Chapter 2 Theoretical methods.........................15
2.1 The finite-difference time-domain method (FDTD)
..............................................15
2.2 The calculation of Q-factor...................20
2.3 The conformal transformation..................24
2.4 The effective index approximation.............29
2.5 Summary.......................................32
Chapter 3 The calculation of coupling length for the concentrically curved waveguides......................33
3.1 The analysis methods of the curved waveguides
..............................................33
3.2 The coupling length obtained by the conformal transformation method.................................39
3.3 The coupling length obtained by FDTD..........47
3.4 Discussion and summary........................51
Chapter 4 Analysis and optimization of microring resonator.............................................54
4.1 Critical coupling.............................55
4.2 Various microring resonators..................62
4.3 The bending loss..............................69
4.4 Summary.......................................72
Chapter 5 Fabrication and measurement of compact pulley-type microring resonator..............................73
5.1 Fabrication of pulley-type microring resonator
..............................................73
5.2 Measurement and the experimental setup........76
5.3 Summary.......................................81
Chapter 6 Conclusions and Future works................82
6.1 Conclusions...................................82
6.2 Future works..................................84
Reference.............................................85
Publication List......................................91
參考文獻 [1] J. J. Thomson, Notes on Recent Researches in Electricity and Magnetism. (Clarendon, Oxford, 1893)
[2] Lord Raleigh, “On the passage of electric waves through tubes, or the vibration of dielectric cylinders,” Phil. Mag., 43, 125 (1897).
[3] D. Hondros and P. Debye, “Elektromagnrtische Wellen an dielektrischen Drähten,” Ann. d. Phys., 32, 465 (1910).
[4] K. C. Kao, and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. IEE, 113, 1151 (1966).
[5] N. J. Doran and K. J. Blow, “Cylindrical Bragg Fibers: A Design and Feasiblity Study For Optical Communications,” J. Lightwave Technol., LT-1, 588 (1983).
[6] S. S. Lo, M. S. Wang and C. C. Chen, “Semiconductor hollow optical waveguides formed by onmi-directional reflectors” Opt. Express, 12, 6589 (2004).
[7] H. K. Chiu, F. L. Hsiao, C. H. Chan and C. C. Chen, “Compact and low-loss bent hollow waveguides with distributed Bragg reflector,” Opt. Express, 16, 15069 (2008).
[8] J. Scheuer, G. T. Paloczi, J. K. S. Poon and A. Yariv, “Coupled Resonator Optical Waveguides: Towards Slowing and Storing of Light”, Opt. Photon. News, 16, 36 (2005).
[9] J. Scheuer, “Slow propagation of externally injected light pulses in coupled semiconductor laser array,” Europhysics. Lett., 77, 44004 (2007).
[10] J. Scheuer, “Slow light rotation sensors and Gyroscopes,” Proc. Of SPIE, 7579, 757919 (2010).
[11] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring Resonator Channel Dropping Filters,” J. Lightwave Technol., 15, 998 (1997).
[12] V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett., 29, 2867, (2004).
[13] M. Terrel, Michel J. F. Digonnet, and S. Fan, “Performance comparison of slow-light coupled-resonator optical gyroscopes,” Laser & Photon. Rev., 3, 465 (2009).
[14] A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, and L. Maleki, “Optical gyroscope with whispering gallery mode optical cavities,” Opt. Comm., 233, 107, (2004).
[15] Jacob Scheuer and Amnon Yariv, “Sagnac effect in coupled resonator slow light waveguide structures,” Phys. Rev. Lett., 96, 053901 (2006).
[16] J. Hu, N. Carlie, N. Feng, L. Petit, A. Agarwal, K. Richardson and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonator in chalcogenide glass for sensing,” Opt. Lett., 33, 2500 (2008).
[17] L. Bi, J. Hu, L. Kimerling, and C. A. Ross, “Fabrication and characterization of As2S3/Y3Fe5O12 and Y3Fe5O12/SOI strip-loaded waveguides for integrated optical isolated optical isolator applications,” Proc. Of SPIE, 7604, 760406 (2010).
[18] E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani and A. Adibi, “Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelength,” Opt. Express, 18, 2127 (2010).
[19] K. D. Vos, I. Bartolozzi, E. Schacht, P. Bienstman and R. Baets, “Silicon-on-Insulator microring resonator for sensitive and label-free biosensing,” Opt. Express, 15, 7610 (2007).
[20] K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antennas Propag, 14, 302 (1966).
[21] H. T. Chien, “2x2 Photonic Crystal Beamsplitter,” Institute of Optical Science, National Central University, 2004.
[22] A. Taflove and S. C. Hagness, “Computational Electrodynamics: The Finite-Difference Time-Domain Method,” Baker & Taylor Books, 2000.
[23] J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185 (1994).
[24] M. Koshiba, Y. Tsuji and S. Sasaki, “High-performance adsorbing boundary conditions for photonic crystal waveguide simulations,” IEEE Microwave Compon. Lett., 11, 152 (2001).
[25] 欒丕剛, 陳啟昌, 光子晶體-從蝴蝶翅膀到奈米光子學, 第二版, 五南圖書出版社股份有限公司, 2006.
[26] O. Paniter, J. Vuckovic and A, Scherer, “Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab,” J. Opt. Soc. Am. B, 16, 275 (1999).
[27] O. Svelto and D. C. Hanna, Principles of Laser, Third Edition, Springer.
[28] The University of Texas. “Oscillations and Waves,” http://farside.ph.utexas.edu/teaching/315/Waves/node10.html#e3.28x
[29] R. Schinzinger and P. A. A. Laura, Conformal Mapping: Method and Application, First Edition, Dover.
[30] 伍茂仁, “Equivalent Waveguide Theory Based on Conformal Mapping Method : Design and Analysis of Ideal Optical Waveguides,” 國立中央大學, 光電科學研究所, 2001.
[31] K. Kawano and T. Kitoh, INTRODUCTION TO OPTICAL WAVEGUIDE ANALYSIS, John Wily & Sons.
[32] K. Okamoto, Fundamentals of Optical Waveguide, First edition, Academic.
[33] C. R. Pollock and M. Lipson, INTEGRATED PHOTONICS, Kluwer Academic.
[34] H. Kogelnik and R. V. Schmidt, “Switched directional couplers with alternating ,” IEEE J. Quantum Electron., QE-12, 396 (1976).
[35] S. Kurazono, K. Iwasaki and N. Kumagai, “New optical modulator consisting of coupled optical waveguide,” Electron. Commun. Jap., 55, 103 (1972).
[36] H. F. Taylor, “Optical switching and modulation in parallel dielectric waveguides,” J. Appl. Phys., 44, 3257 (1973).
[37] S. Somekh, E. Garmire, H. L. Gavin and R. G. Hunsperger, “Channel optical waveguides and directional couplers in GaAs-Imbedded and ridged,” Appl. Optics, 13, 327 (1974).
[38] J. M. Hammer, “Modulation and switching of light in dielectric waveguides,” in Integrated Optics, 7, 140 (1975).
[39] K. T. Koai and P. L. Liu, “Digital and quasi-linear electroopic modulators synthesized from directional couplers,” IEEE J. Quantum Electron., QE-22, 2191 (1986).
[40] G. L. Yip and J. Finak, “Directional-coupler power divider by two step K+-ion exchange,” Opt. Lett., 9, 423 (1984).
[41] F. Gonthier, D. Richard, S. Lacroix and K. Bures, “Wavelength-flattened 2x2 splitters made of indentical single-mode fibers,” Opt. Lett. 16, 1201 (1991).
[42] W.-P. Huang., “Coupled-mode theory for optical waveguides: An overview,” J. Opt. Soc. Amer. A, 11, 963 (1994).
[43] A. Kumar, A. N. Kaul and K. Ghatak, “Prediction of coupling glength in a rectangular-core directional coupler: an accurate analysis,” Opt. Lett., 10, 86 (1985).
[44] H. C. Cheng and R. V. Ramaswamy, “Determination of the Coupling Length in Directional Couplers from Spectral Response,” IEEE Photon. Technol. Lett., 2, 823 (1990).
[45] E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071 (1969).
[46] M. Heiblum and J. H. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” IEEE J. Quantum Electron., QE-11, 75 (1975).
[47] K. Thyagarajan, M. R. Shenoy and A. K. Ghatak, “Accurate numerical method for the calculation of bending loss in optical waveguide using a matrix approach,” Opt. Lett. 12, 296 (1987).
[48] J. S. Gu, P. A. Besse, and H. Melchior, “Novel method for analysis of curved optical rib-waveguides,” Electron. Lett., 25, 278 (1989).
[49] M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol., 16, 1433 (1998).
[50] W. Berglund and A. Gopinath, “WKB analysis of bend losses in optical waveguides,” J. Lightwave Technol., 18, 1161 (2000).
[51] D. P. Cai, C. C. Chen, C. C. Lee and T. D. Wang, “Study of Coupling Length of Concentrically Curved Waveguides,” IEEE Photon. J., 4, 80 (2012).
[52] H. F. Taylor and A. Yariv, “Guided wave optics,” Proc. IEEE, 62, 1044 (1974).
[53] D. P. Cai, J. H. Lu, C. C. Lee, and C. C. Chen, “High Q-factor microring resonator wrapped by the curved waveguide,” (submitted to Scientific Reports.)
[54] K. P. Yap, A. Delage, J. Lapointe, B. Lamontagne, J. H. Schmid, P. Waldron, B. A. Syrett and S. Janz, “Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge Waveguides,” J. Lightwave Technol., 27, 3999 (2009).
[55] G. Pandraud, E. M. Balbas, C. K. Yang and P. J. French, “Experimental Characterization of Roughness Induced Scattering Losses in PECVD SiC Waveguides,” J. Lightwave Technol., 29, 744 (2011).
[56] F. Grillot, L. Vivien, S. Laval, D. Pascal and E. Cassan, “Size Influence on the Propagation Loss Induced by Sidewall Roughness in Ultrasmall SOI Waveguides,” IEEE Photon. Technol. Lett., 16, 1661 (2004).
[57] B. Su, C. Wang, Q. Kan and H. Chen, “Compact Silicon-on-Insulator Dual-Microring Resonator Optimized for Sensing,” J. Lightwave Technol., 29, 1535 (2011).
[58] P. Dumon, W. Bogaerts, V. Wiaux, J. Wouters, S. Beckx, J. V. Campenhout, D. Taillaert, B. Luyssaert, P. Bienstman, D. V. Thourhout and R. Baets, “Low-Loss SOI Photonic Wires and Ring Resonators Fabricated With Deep UV Lithography,” IEEE Photon. Technol. Lett., 16, 1328 (2004).
[59] A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett., 15, 921 (2003).
[60] M. Soltani, S. Yegnanarayanan, Q. Li and A. Adibi, “Systematic Engineering of Waveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment,” IEEE J. Quantum Electron., 46, 1158 (2010).
[61] Joyce K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B, 21, 1665 (2004).
[62] B. E. little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Jhonson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very High-Order Microring Resonator Filters for WDM Applications,” IEEE Photon. Technol. Lett., 16, 2263 (2004).
[63] A. Yariv “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett., 36, 321 (2000).
[64] L. F. Stokes, M. Ghodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett., 7, 288 (1982).
[65] J. Niehusmann, A.Vorckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator, ” Opt. Lett., 29, 2861 (2004).
[66] I. Goykhman, B. Desiatov, and U. Levy, “Ultrathin silicon nitride microring resonator for biophotonic applications at 970 nm wavelength,” Appl. Phys. Lett., 97, 081108 (2010).
[67] A. C. Turner, M. A. Foster, A. L. Gaeta and M. Lipson, “Ultra-low power parametric frequency conversion in a silicon microring resonator,” Opt. Express, 16, 4881 (2008).
[68] A. Belarouci, K. B. Hill, Y. Liu, Y. Xiong, T. Chang, and A. E. Craig, “Design and modeling of waveguide-coupled microring resonator,” J. Lumin., 94-95, 35 (2001).
[69] M. Forst, J. Niehusmann, T. Plotzing, J. Bolten, T. Wahlbrink, C. Moormann, and H. Kurz, “High-speed all-optical switching in ion-implanted silicon-on-insulator microring resonators,” Opt. Lett., 32, 2046 (2007).
[70] H. K. Hsiao and K. A. Winick, “Planar glass waveguide ring resonators with gain,” Opt. Express, 15, 17783 (2007).
[71] V. M. Menon, W. Tong, and S. R. Forrest, “Control of Quality Factor and Critical Coupling in Microring Resonators Through Integration of a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett., 16, 1343 (2004).
[72] H. Cai, and A. W. Poon, “Optical manipulation and transport of microparticles on silicon nitride microring-resonator-based add-drop devices,” Opt. Lett., 17, 2855 (2010).
[73] M. K. Chin, “Polarization dependence in waveguide-coupled micro-resonators,” Opt. Express, 11, 1724 (2003).
[74] J. T. Robinsor, L. Chen, and M. Lipson, “On-chip gas detection in silicon optical microcavities,” Opt. Express 16, 4296 (2008).
[75] http://refractiveindex.info.
[76] D. P. Cai, J. H. Lu, C. C. Chen, C. C. Lee, C. E. Lin and T. J. Yen, “Compact pulley-type microring resonator with high quality factor,” Appl. Phys. Express, 7, 112201 (2014).
[77] B. Howley, X. Wang, R. T. Chen, and Y. Chen, “Experimental evaluation of curved polymer waveguides with air trenches and offsets,” J. Appl. Phys. 100, 023114 (2006).
指導教授 陳啟昌、李建階 審核日期 2015-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明