博碩士論文 976402601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.16.217.6
姓名 張文和(Slawomir Jack Giletycz)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 恆春半島的構造地形演化
(Landscape dynamics of the Henghcun Penisula, southern Taiwan)
相關論文
★ 應用雷達干涉法在彰化縣員林地區地層下陷研究★ 應用太空大地測量法探討台南地區之地表變形
★ 應用地形分析方法研究台灣中央山脈東翼地表抬升★ 利用衛星影像萃取近岸地形-以台灣北部為例
★ 台灣西南部前陸地區演育與古應力分析★ 桃園臺地群地表變形與地下構造之研究
★ 應用永久散射體差分干涉法觀測台灣北部地區之地表變形★ 台灣東部縱谷南端之活動構造研究
★ Seismic hazard assessment in Taiwan: Insights from historical seismicity and radar interferometry analyses★ 台北盆地及周圍山區之現今地表變形研究
★ 利用永久性散射體差分干涉法探討台南地區之地殼形變★ 臺灣南部橫貫公路向陽-初來段之構造與邊坡穩定
★ 莫拉克風災山崩區域之地質構造與大地應力分析★ 台灣中部埔里盆地的構造活動: 衛星遙測和野外觀測
★ 青藏高原東緣龍門山造山帶與四川前陸盆地間之構造演化★ 利用測地資料分析花東縱谷北段之地殼變形
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 位於台灣最南端的恆春半島擁有最年輕的地形景觀。由於台灣的造山作用是由北向南傳遞,恆春半島保存了一套最年輕也最完整的岩層露頭。在如此年輕的地形,我們可觀察到非常活躍的構造活動,並藉由這些的構造地形特徵,分析此區域的構造活動歷史。
此博士論文的目標乃藉由描繪現今的地形演化特徵、方向及演化速率以了解恆春半島的構造活動。透過野外調查、數值高程模型的分析,並結合前人研究成果,以獲得地形特徵的參數,利用量化的資訊直接獲得構造地形之演化程度。流域盆地和河道特徵是此研究方法的主要目標,透過現階段的流域系統萃取遷急點的行為以得知該流域的古平衡情形,而遷急點向上游倒退的量值可提供地形變動的反應時間資訊。在研究的過程中,流域盆地的形貌亦受到河流地形襲奪演化影響,襲奪事件不只會更改流域盆地的參數,也提供其他地形演化資訊。
在此論文中的第二部分主要為恆春半島地質構造的繪製。綜合前人對恆春半島的地質調查結果及野外調查資料,建立了修正後的區域地質圖,特別在半島的西南部。透過野外觀察,為上新世至全新世的地層建立了新的構造概念,可成功解釋之前不能解決的地質問題並得到更完整的結論。
摘要(英) Hengchun Peninsula is the youngest landscape in Taiwan. Due to southward propagating emergence of the island, the peninsula also outcrops the youngest formations in the orogen. In such juvenile topography, we are able to observe very dynamic geomorphic processes, likewise expect to locate relict landforms before their adjustment to new topographical settings.
The Hengchun Peninsula was a target of my doctorate survey. I tried to map the present conditions of the landscape evolution and track the directions, rates of the geomorphic processes. Based on fieldwork, DEMs (Digital Elevation Models) processing and profound synthesis of the previous publications, I expected to derive parameterization of the landforms features, which could direct a sense and enhance comprehension of the landscape evolution. Drainage basins and fluvial processes were the major subjects in my methodology, where through knickpoint behavior I extracted the paleo-equilibrium conditions from present stage of the drainage system. Then, knickpoints regression values give the response time of the landscape to the subsurface input. However during the survey I also recognized that the drainage basins are deformed by other feature that influence the landscape evolution- captures. The capture events not only distort the basins parameters but also give valuable information about relict landscape shrinkage. This phenomenon is apparent in the Hengchun Peninsula, where I was competent to map its range and input as another parameter of the landscape development.
The second part of my dissertation concerned the geological mapping of the Hengchun Peninsula. After synthesis of previous surveys over the peninsula’s geology and number of my field investigations, I built an updated geological map of the area. Especially in the southwestern part of the peninsula, my observation delivered new tectonic concept of the Pliocene to Holocene formations. This new approach benefited to explain few ‘not-solved’ issues and conclusively I believe it is the most complete geological map of the area till present.
關鍵字(中) ★ 過渡地形
★ 造山帶
★ 台灣
★ 河流作用
★ 遷急點
★ 恆春斷層
★ 活動構造
關鍵字(英) ★ transient landscape
★ orogen
★ Taiwan
★ fluvial processes
★ knickpoint retreat
★ Herngchun Fault
★ active tectonics
論文目次 Contents.

1. BACKGROUND TO THE RESEARCH…………….……………..………………...…………… 1
1.1. Introduction…………………………..………....………………………………………………….. 3
1.2. Theoretical approach to geomorphology…………………………………..……........... 4
1.3. Conception of the geomorphology…..…………………………………………………….. 5
1.4. Steady states in open systems………………………………………………………………. 10
1.5. Landscapes and landforms…………………………………………………………………… 13
1.6. Fluvial systems…………………………………………………………………………………….. 14

2. HYPOTHESIS ANS AIMS OF THE RESEARCH..……………………..….………………… 21
2.1. Justification for previous research over the Hengchun Peninsula…………… 23
2.2. Aims of the thesis……...…………………………………………………………………………. 26
2.3. Methodology……………………………………………………………………………………….. 28
2.4. Limitations and delimitations of the research……………………………………….. 29

3. INTRODUCTION TO TAIWAN OROGEN…………………….…….………………….......... 35
3.1. Characteristics of Taiwan orogen………………………………………………………….. 37
3.2. Vertical deformation of Taiwan…………………….………………………………………. 40
3.3. Seismicity and tomography velocity field beneath southern Taiwan………. 42

4. GEOLOGY OF THE HENGCHUN PENINSULA…………………..………….…………….. 47
4.1. General view of the peninsula’s geology..………………………………………………. 49
4.2. Lithology…………………….…………………….…………………….…………………………… 51
4.2.1. Mutan Formation…………….………………………………………………………………....... 51
4.2.2. Lilong sandstone………………………………………………………………………………...... 55
4.2.3. Luoshui sandstone……………………………………………………………………………...... 57
4.2.4. Shimen conglomerates…………………………………………………………………………. 58
4.2.5. Kenting Formation……………………………………………………………………………….. 60
4.2.6. Maanshan Formation……………………………………………………………………………. 63
4.2.7. Hengchun Limestone……………………………………………………………………………. 69
4.2.8. Sigou and Oluanpi Formations………….…………………………………………………... 70
4.2.9. Coral reefs terraces……………………………………………………………………………… 71
4.3. The Hengchun Fault and tectonic model of the southwestern Hengchun Peninsula…………………………………………………………………….........................…… 73

5. GEOMORPHIC ANALYSIS OF THE HENGCHUN PENINSULA……………………… 83
5.1. Dynamic topography of Taiwan………………………..…………………………………… 85
5.2. Publication…………………………………………………………………………………………... 91

TRANSIENT FLUVIAL LANDSCAPE AND PRESERVATION OF LOW-RELIEF TERRANS IN AN EMERGING OROGEN: EXAMPLE FROM HENGCHUN PENINSULA, TAIWAN………………..………………………………………………………….……….. 93
I) Abstract…………………………………………………………………………………….... 94
1. Introduction……………………………………………………………………………….. 95
2. Geological background……………………………………………………………….... 97
3. Geomorphic characteristics of the Hengchun Peninsula…………………. 101
4. Methods………….………………………………………………………………………….... 103
4.1. Topographic and relief analysis……………………………………………… 103
4.2. Steepness index and concavity index……………………………………… 105
4.3. Modeling knickpoint retreat………………………………………………….. 106
4.4. Asymmetry factor (AF) observations……………………………………… 108
5. Results………………………………………………………………………………………… 108
5.1. Topographic and relief analysis……………………………………………… 108
5.2. Long river profiles, steepness and concavity indices……………….. 111
5.3. Modeling knickpoint retreat: Is there a wave of regressive erosion in the Hengchun Peninsula?.....………………………………… 115
5.4. River captures……………………………………………………………………… 117
6. Discussion………………………………………………………………………………… 120
7. Conclusions……………………………………………………………………………… 125
II) Acknowledgments…………………………………………………………………… 126

6. CONCLUDING REMARKS………………………………………………………………………… 127
6.1. Summary…………………………………………………………………………………………………. 127
6.2. Outstanding challenges………………………………….. 129

BIBLIOGRPAHY………………………………………………………………………….…………………. 131

APPENDIX A………………………………………………………………………………………………….. 145
I) Preface to the article……..…………………………………………………………………... 147
II) Publication……………………………………………………………………………………… 149

GEOLOGICAL STRUCTURE AS A CRUCIAL FACTOR FACILITATING THE OCCURRENCE OF TYPHOON-TRIGGERED LANDSLIDES: CASE FROM HSIAOLIN VILLAGE, 2009 TYPHOON MORAKOT……………………………………………………………… 151
I) Abstract………………………………………………………………………………………………. 151
II) Abstract (Chinese)……………………………………………………………………………….. 153
1. Introduction………………………………………………………………………………………… 154
1.1 Geological and climate background in terms of earthquake-triggered and typhoon-triggered landslides in Taiwan………………………………. 156
1.2 Hsiaolin Landslide and its geological setting………………………………. 158
1.3 Field observations and structural analysis…………………………………. 160
1.4 Geomorphic analysis…………………………………………………………………. 166
2. Discussion…………………………………………………………………………………………… 169
3. Conclusions…………………………………………………………………………………………. 170
III) Acknowledgments………………………………………………………………………….. 171
IV) References……………………………………………………………………………………… 171

APPENDIX B………………………………………………………………………………………………….. 175
參考文獻 Bibliography.

Ahnert, F., (1984). Local relief and the height limits of mountain ranges. American Journal of Science, 284, 1035-1055.
Alden, S., McQuade, M., (2011). Landform building: Architecture’s new terrain. Lars Muller Publishers.
Angelier, J., (1989). From orientation to magnitudes in paleostress determinations using fault slip data. Journal of Structural Geology, 11, 37-50.
Angelier, J., (1990). Inversion of field data in fault tectonics to obtain the regional stress-III. A new rapid direct inversion method by analytical means. Geophysical Journal International, 103, 363-376.
Attal, M., Tucker, G.E., Whittaker, A.C., Cowie, P.A., Roberts, G.P., (2008). Modeling fluvial incision and transient landscape evolution: Influence of dynamic channel adjustment. Journal of Geophysical Research, 113, F03013.
Banavar, J.R., Colairoi, F., Flammini, A., Giacometti, A., Martin, A., Rinaldo, A., (1997). Sculpting of a fractal river basin. Physical Review Letters. 78, 23, 4522-4525.
Berlin, M.M., Anderson, R.S., (2007). Modeling of knickpoint retreat on the Roan Plateau, western Colorado. Journal of Geophysical Research- Earth Surface, 112, F03S06.
Bishop, P., Hoey, T.B., Jansen, J.D., Artza, I.L., (2005). Knickpoint recession rate and catchment area: the case of uplifted rivers in eastern Scotland. Earth Surface Processes and Landforms, 30, 767–778.
Bloom, A.L., (2004). Geomorphology: A systematic analysis of Late Cenozoic Landforms. Waveland Pr Inc.
Brunsden, D., Thornes, J.B., (1979). Landscape sensitivity and change. Trnaslantions of the Institute of British Geographers, 4 (4), 463-484.
Brunsden, D., (1996). Geomorphological events and landform change. Zeitschrift fur Geomorphologie. 40, 3, 273-288.
Burbank, D.W., (2002). Rates of erosion and their implications for exhumation. Mineralogical Magazine, 66, 25–52.
Burkham, D.E., (1972). Channel changes of the Gila River in Safford Valley, Arizona. U.S. Geological Survey Professional Paper. 655, 24.
Burton, A.C., (1939). The properties of the steady state compared to those of equilibrium as shown in characteristic biological behavior. Journal of Cellular and Comparative Physiology. 14, 327-349.
Carrara, A., (1993). Uncertainty in evaluating landslide hazard and risk. In Prediction and Perception of Natural Hazards (Edited by Nemec, J., Nigg, J.M. and Siccardi, F.), 101-109, Kluwer Academic Publishers.
Central Geological Survey, MOEA (Ministry of Economic Affair), (1999). Geological map of the Hengchun Peninsula.
Central Weather Bureau, Taiwan. http://www.cwb.gov.tw//
Chang, J-C., (1996). Natural hazards in Taiwan. Geo Journal, 38, 251-257.
Chang, J-C., Slaymaker, O., (2002). Frequency and spatial distribution of landslides in a mountainous drainage basin: Western Foothills, Taiwan. Catena, 46, 285-307.
Chang, C-P., Angelier, J., Lee, T-G., Huang, C., (2002). From continental margin extension to collision orogen : structural development and tectonic rotation of the Hengchun peninsula, southern Taiwan. Tectonophysics, 361, 61–82.
Chang, C-P., Angelier, J., Lu, C-Y. (2009). Polyphase deformation in a newly emerged accretionary prism: Folding, faulting and rotation in the southern Taiwan mountain range. Tectonophysics, 466(3-4), 395–408.
Chen, H-F., (1984). Crustal uplift and subsidence in Taiwan: An account based upon retriangulation results. Special Publication of the Central Geological Survey, 3, 127-140.
Chen, W-S., Lee W-C., (1990). Reconsideration of the stratigraphy of the western Hengchun Hill. Geology, 10, 2, 127-140.
Chen, Y-G., Liu, T-K., (1993). Holocene radiocarbon dates in Hengchun Peninsula and their neotectonic implications. Journal of the Geological Society of China. 36(4), 457-479.
Chen, Y-G., Liu, T-K. (2000). Holocene uplift and subsidence along an active tectonic margin south-western Taiwan. Quaternary Science Reviews, 19(9), 923–930.
Chen, W-S., Lee, W-C., Hunag, N-W., Yen, I-C., Yang, C.C., Yang, H-C., Chen, Y-C., Sung, S.H., (2005). Characteristics of accretionary prism of Hengchun Peninsula, southern Taiwan: Holocene activity of the Hengchun Fault. Western Pacific Earth Sciences, 5, 129-154.
Chen, H., Dadson, S., Chi, Y-G., (2006). Recent rainfall-induced landslides and debris flow in northern Taiwan: Geomorphology, 77, 112-125.
Chen, K-H., Yang, M., Huang, Y-T., Ching, K-E., Rau, R-J., (2011). Vertical Displacement Rate Field of Taiwan From Geodetic Levelling Data 2000-2008. Survey Review, 43(321), 296–302.
Cheng, Y-M., Huang C-Y., (1975). Biostratigraphic study in the west Hengchun hill. Acta Geologica Taiwanica, 18, 49-59.
Cheng, Y-M., Huang, C-Y., Yeh, J-J., Chen W-S., (1984). The Loshui formtaion: deeper-water sandstones on the Hengchun Peninsula, southern Taiwan. Acta Geologica Taiwanica, 22, 100-117.
Ching, K-E., Li, J-H., Chang, C-P., Rao, R-J., Chen, J-L., (2014). Movement of the active fault in the Hengchun Peninsula triggered by the 2006 Pingtung Earthquake using geodetic data from 2002 to 2013, (presentation), Taiwan Geoscience Assembly-2014.
Ching, K-E., Hsieh, M-L., Johnson, K.M., Chen, K-H., Rau, R-J., Yang, M. (2011). Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008. Journal of Geophysical Research, 116(B8), B08406.
Chorley, R.J., (1962). Geomorphology and general systems theory. Theoretical papers in the hydrologic and geomorphic sciences. 500-B, 1-10.
Craddock, W.H., Kirby, E., Harkins, N.W., Zhang, H., Shi, X., Liu, J., (2010). Rapid fluvial incision along the Yellow River during headward basin integration. Nature Geoscience, 3(3), 209–213.
Crosby, B.T., Whipple, K.X., (2006). Knickpoint initiation and distribution within fluvial networks: 236 waterfalls in the Waipaoa River, North Island, New Zealand. Geomorphology, 82, 16-38.
Crozier, M.J., (2010). Deciphering the effect of climate change on landslide activity. A review: Geomorphology, 124, 260-267.
Dadson, J.D., Hovius, N., Chen, H., Dade, W.B., Hsieh, M-L., Willet, S.D., Hu, J-C., Horng, M-J., Chen, M-C., Stark, C.P., Lague, D., Lin, J-C., (2003). Links between erosion, runoff, variability and seismicity on the Taiwan orogen. Nature, 426, 648-651.
Davis, W.M., (1989). The geographical cycle. Geography Journal, 14, 481 – 504.
Edwards, K.J., Whittington, G., (2001). Lake sediments, erosion and landscape change during the Holocene in Britain and Ireland. Catena, 42, 143-173.
Flint, J.J., (1974). Stream gradient as a function of order, magnitude, and discharge. Water Resources Research, 10, 969-973.
Fujisawa, K., Marcat, G., Nomura, Y. and Pasuto, A., (2010). Management of typhoon-induced landslide in Otomura (Japan). Geomorphology, 124, 150-156.
Fuller, C.W., Willett, S.D., Fisher, D., Lu, C.-Y., (2006). A thermomechanical wedge model of Taiwan constrained by fission-track thermochronometry. Tectonophysics, 425, 1-24.
Gallen, S.F., Wegmann, K.W., DelWayne R. B., (2013). Miocene rejuvenation of topographic relief in the southern Appalachians. GSA Today, 23, 2.
Garcia-Castellanos, D., (2006). Long-term evolution of tectonic lakes: Climatic controls on the development of internally drained basins. Society, 2398(17), 283–294.
Geoengineering Extreme Events Reconnaissance (GEER), (2009). Reconnaissance report of the August 8, 2009 Typhoon Morakot; Taiwan. Report of the National Science Foundation-Sponsored Geoengineering Extreme Events Reconnaissance (GEER) Team, GEER Association Report (No. GEER-018). http://www.geerassociation.org/
Giletycz, S.J., Chang, C-P., Huang, C-C., (2012). Geological structure as a crucial factor facilitating the occurrence of typhoon-triggered landslides: Case from Hsiaolin Village, 2009 Typhoon Morakot. Western Pacific Earth Sciences, 12, 1, 21-38.
Graf, W.L., (1977). The rate law in fluvial geomorphology. American Journal of Science. 277, 178-191.
Hack, J.T., (1957). Studies on longitudinal stream profiles in Virginia and Maryland. U.S. Geological Survey Professional Paper, 294-B, 97.
Hack, J.T., (1960). Interpretation of erosional topography in humid temperate regions. American Journal of Science, 258-A, 80-97.
Hare, P.H., Gardner T.W., (1985). Geomorphic indicators of vertical neotectonism along the converging plate margins, Nicoya Peninsula, Costa Rica. Tectonic Geomorphology, 4, 75-104.
Haviv, I., Enzel, Y., Whipple, K.X., Zilberman, E., Matmon, A., Stone, J., Fifield, K.L., (2010). Evolution of vertical knickpoints (waterfalls) with resistant caprock: insights from numerical modeling. Journal of Geophysical Research- Earth Surface, 155, F03028.
Ho, C.S., (1998). An introduction to the geology of Taiwan. Central Geological Survey, MOEA (Ministry of Economic Affair).
Hoek, E. and Bray, J.W., (1981). Rock Slope Engineering, 3rd Edition. The Institution of Mining and Metallurgy, London, 358.
Howard, A., (1994). A detachment-limited model of drainage basin evolution. Water Resources Research, 30(7), 2261-2285.
Hsieh, M-L., Liew, P-M., Hsu, M-Y. (2004). Holocene tectonic uplift on the Hua-tung coast, eastern Taiwan. Quaternary International, 115-116, 47–70.
Huang, C-Y., Wei, W-Y., Chang, C-P., Tsao, S., Yuan, P.B., Lin C-W., Xia K-Y., (1997). Tectonic evolution of accretionary prism in the arc-continent collision terrace of Taiwan. Tectonophysics, 281, 31-51.
Huggett, R.J., (2007). Fundamentals of Geomorphology. Routledge.
Hung, J.J. (2000) Chi-Chi Earthquake induced landslides in Taiwan. Earthquake Engineering and Engineering Seismology, 2, 2, 25-33.
Jackson, J., Norris, R., Youngson J., (1996). The structural evolution of active fault and fold systems in central Otago, New Zealand: evidence revealed by drainage patterns. Journal of Structural Geology, 18, 2-3.
Kao, S.J., Milliman, J.D., (2008). Water and sediment discharges from small mountainous rivers, Taiwan: The roles of lithology, episodic events, and human activities. Journal of Geology, 116, 431–448,
Kirby, E., Whipple, K.X., (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology, 29, 415-418.
Kirby, E., Tang, W., Whipple, K.X., Chen, Z. (2003). Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles. Journal of Geophysical Research, 108, B4, 2217.
Kirby, E., Whipple, K.X., (2012). Expression of active tectonics in erosional landscapes. Journal of Structural Geology, 44, 54-75.
Kirstein, L.A., Carter, A., Chen, Y., (2010). Testing inferences from palaeocurrents : application of zircon double-dating to Miocene sediments from the Hengchun Peninsula, Taiwan. Terra Nova. 22, 6, 483-493.
Kuo, C-Y., (2009). Modeling of debris flow. Seminar National Centraul University, Taiwan. http://www.gep.ncu.edu.tw/chinese/Action/lecture/981/981218/2009_ncu_seminar.pdf
Lague, D., Davy, P., (2003). Constrains on the long-term colluvial erosion law by analysing slope-area relationship at various tectonic uplift rates in the Siwalik Hills (Nepal). Journal of Geophysical Research, 108(B2), 2129.
Lee, C-Y., Liew, P-M., Lee, T-Q., (2010). Pollen records from southern Taiwan: implications for East Asia summer monsoon variation during the Holocene. The Holocene, 20, 1, 1-9.
Liew, P-M., Lin, C-F., (1987). Holocene tectonic activity of the Hengchun Peninsula as evidenced by the deformation of marine terraces. Memoir of the Geological Society of China, 9, 241-259.
Liew, P-M., Pirazzoli, P.A., Hsieh, M-L., Arnold, M., Barusseau, J.P., Fontugne, M. and Giresse, P., (1993). Holocene tectonic uplift deducted from elevated shorelines, eastern Coastal Range of Taiwan. Tectonophysics, 222, 55-68.
Lin, S-B., Wang, Y-R. (2001). Clay minerals in the rock formations on the Hengchun Peninsula, Southern Taiwan, and their tectonic implications. Estern Pacific Earth Sciences, 1(2), 157-174.
Lin, A-T., Watts, A.B. (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research, 107(B9).
Lin, A-T., Watts, A.B., Hesselbo, S.P., (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15, 453–478.
Liu, J-P., Liu, C-S., Xu, K-H., Milliam, J.D., Chiu, J-K., Kao, S-J., Lin S-W., (2008). Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait. Marine Geology, 256, 65-76.
Loget, N., Davy, P., Van den Driessche, J., (2006). Mesoscale fluvial erosion parameters deduced from the modeling of the Mediterranean sea-level drop during the Messinian (Late Miocene). Journal of Geophysical Research, 111, F03005.
Loget, N., Van Den Driessche, J., (2009). Wave train model for knickpoint migration. Geomorphology, 106, 376–382.
Lyell, C., (1830). Principles of Geology. London: John Murray.
Mackin, J.H., (1948). Concept of the graded river. Bulletin of the Geological Society of America. 59, 463-512.
McIntosh, K.D., Nakamura, Y., Wang, T-K., Shih, R-C., Chen, A-T., Liu, C-S., (2005). Crustal-scale seismic profiles across Taiwan and the western Philippine Sea. Tectonophysics 401, 23–54.
McIntosh, K.D., Kuochen, H., Van Avendonk, H.J., Lavier, L.L., Wu, F-T., Okaya, D.A., (2013). Two-dimensional seismic velocity models of southern Taiwan from TAIGER transects. American Geophysical Union, Fall Meeting, T21G-05.
Mesalles, L., Mouthereau, F., Bernet, M., Chang, C-P., Lin, T-S., Fillon, C., Sengelen, X., (2014). From submarine continental accretion to arc-continent orogenic evolution: the thermal record in the Taiwan mountain belt. Geology.
Milliman, J.D., Syvitski, J.P.M., (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology. 100, 525-544.
Montgomery D.R., (2001). Slope distributions, threshold hillslopes, and steady-state topography. American Journal of Science, 301, 432–454.
Montgomery, D.R., Dietrich, W.E., (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30, 1153-1171.
Muntohar, A.S. and Liao, H-J., (2009). Analysis of rainfall-induced infinite slope failure during typhoon using a hydrological-geotechnical model. Environmental Geology, 56, 1145-1159.
Mouthereau, F., Fillon, C., Ma, K-F., (2009). Distribution of strain rates in the Taiwan orogenic wedge. Earth and Planetary Science Letters, 284 (3-4), 361–385.
Page, B.M., Lan C-Y., (1983). The Kenting melange and its record of tectonic events. Memoir of the Geological Society of China, 5, 227, 248.
Pelletier, B., Stephan, J.F., (1986). Middle Miocene obduction and late Miocene beginning of collision registered in the Hengchun Peninsula: Geodynamics implications for the evolution of Taiwan. Memoir of the Geological Society of China, 7, 301-324.
Peng, T-H., Li, Y-H., Wu, F-T., (1977). Tectonic uplift rates of the Taiwan island since the Early Holocene. Memoir of the Geological Society of China, 2, 57-69.
Petley, D., (2009). The occurrence of fatal, rainfall-induced landslides in Asia in the context of climate change. Geophysical Research Abstracts, 11, NH4.10, EGU2009-6946-1.
Ramsey, L.A., (2006). Topographic evolution of emerging mountain belts. PhD thesis, unpublished.
Ramsey, L.A., Walker, R.T., Jackson J., (2007). Geomorphic constraints on the active tectonics of the southern Taiwan. Geophysics, 170, 1357-1372.
Ramsey, L.A., Walker, R.T., Jackson, J., (2008). Fold evolution and drainage development in the Zagros mountains of Fars province, SE Iran. Basin Research, 20, 23-48.
Rhoads, B.L., Thorn, C.E., (1993). Geomorphology as science: the role of theroy. Geomorphology. 6, 287-307.
Rigon, R., Rodrigues-Iturbe, I., Martian A., Giacometti A., Tarboton, D.G., Rinaldo, A., (1996). On Hack′s law. Water Resources Research. 32, 11, 3367-3374.
Ronchetti, F., Borgatti, L., Cervi, F., Corsini, A., (2010). Hydro-mechanical features of landslide reactivation in weak clayey rock masses. Bulletin of Engineering Geology and the Environment, 69, 267-274.
Roberts, G., White, N.J., (2010). Estimating Uplift Rate Histories from River Profiles using African Examples. Journal of Geophysical Research- Solid Earth, 115.
Rokkaku, H., Maiyamam, T., (1934). 恆春油田地質圖 臺灣總督府殖產局縮尺三萬分之一地質圖及說明書
Rosenbloom, N.A., Anderson, R.S., (1994). Hillslope and channel evolution in a marine terraced landscape, Santa Cruz, California. Journal of Geophysical Research, 99 (B7).
Schumm, S.A., (1977). The fluvial system. Earth Surface Processes. 4, 97-98.
Schuster, R.L., Highland, L.M., (2007). The third Hans Cloos lecture. Urban landslides: Socioeconomic impacts and overview of mitigative strategies. Bulletin of Engineering Geology and the Environment, 66, 1-27.
Siame, L.L., Angelier, J., Chen, R-F., Godard, V., Derrieux, F., Bourlès, D.L., Braucher, R., (2011). Erosion rates in an active orogen (NE-Taiwan): A confrontation of cosmogenic measurements with river suspended loads. Quaternary Geochronology, 6(2), 246–260.
Simoes, M., Avouac, J.P., Beyssac, O., Goffe, B., Farley, K.A., Chen, Y-G., (2007). Mountain building in Taiwan: a thermokinematic model. Journal of Geophysical Research, 112, B11405.
Simoes, M., Beyssac, O., Chen, Y-G., (2012). Late Cenozoic metamorphism and mountain building in Taiwan: A review. Journal of Asian Earth Sciences, 46, 92-119.
Snyder N.P., Whipple, K.X., Tucker, G.E., Merritts, D.J., (2000). Landscape response to tectonic forcing: Digital elevation model analysis of stream profiles in the Mendocino triple junction region, northern California. GSA Bulletin, 112, 1250-1263.
Starkel, L., (1997). Space and time scales in geomorphology. Geografia Fisica e Dinammica Quaternaria, 3, 61-66.
Stolar, D.B., Willet S.D., Montgomery D.R., (2007). Characterization of topographic steady state in Taiwan. Earth and Planetary Science Letters, 261, 421-431.
Sung, Q., Wang, Y., (1986). Sedimentary environments of the Miocene sediments in the Hengchun Peninsula and their tectonic implication. Memoir of the Geological Society of China. 7, 325-340.
Suppe, J., (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4, 67-89.
Takahashi, T., (2009) Typhoon. disaster in Taiwan in August 2009. Report of Dia Consultants Co. http://www.sabo-int.org/case/index_taiwan.html
Teng, L-S., Road, C. (1990). Geotectonic evolution of late Cenozoic arc-continent in Taiwan. Tectonophysics 183, 57–76.
Tsan, S-F., (1974). Stratigraphy and structure of the Hengchun Peninsula, with special reference to a Miocene olistostrome. Bulletin of Geological Survey in Taiwan, 24, 99-108.
Tsou, C-Y., Feng, Z-Y. and Chigara, M., (2011). Catastrophic landslide induced by Typhoon Morakot, Shiaolin, Taiwan. Geomorphology, 127, 166-178.
U.S. Department of the Interior, USGS, (2004). Landslide types and processes. 2004-3072, http://pubs.usgs.gov/fs/2004/3072/
Von Bertalanffy L., (1951). General system theory- A new approach to unity of science (symposium). Human Biology, 23, 303-361.
Walker, R.T., Ramsey, L.A., Jackson, J., (2011). Geomorphic evidence for ancestral drainage patterns in the Zagros Simple Folded Zone and growth of the Iranian plateau. Geological Magazine, 148, 901–910.
Wang, C-H., Burnett, W.C., (1990). Holocene mean uplift rates across an active plate-collision boundary in Taiwan. Science, 248, 4952, 204-206.
Whipple, K.X., (2001). Fluvial landscape response time: how plausible is steady-state denudation? American Journal of Science, 301, 313-325.
Whipple, K.X., (2004). Bedrock rivers and the geomorphology of active orogens. Annual Review of Earth and Planetary Sciences, 32, 151-185.
Whipple, K.X., Tucker, G.E., (1999). Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research, 104(B8), 17661-117674.
Whipple, K.X., Wobus, C.W., Kirby, K., Crosby, B., Sheehan, D., (2007). New Tools for Quantitative Geomorphology: Extraction and Interpretation of Stream Profiles from Digital Topographic Data. Geological Society of America Annual Meeting Course Notes.
Whipple, K.X., DiBiase R.A., Crosby B.T., (2013). Bedrock rivers. Treatise on Geomorphology. 9, 550-573.
Whittaker, A.C., (2012). How do landscapes record tectonics and climate? Lithosphere, 4, 2, 160-164.
Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E., Roberts, G.P., (2007). Bedrock channel adjustment to tectonic forcing: Implications for predicting river incision rates. Geology, 35(2), 103.
Whittaker, A.C., Cowie, P.A., Attal, M., Tucker, G.E., Roberts, G.P., (2007). Constraining transient and steady-state rivers crossing active normal faults: new field observations from the Central Apennines, Italy. Basin Research, The Authors Journal Compilation.
Whittaker, A.C., Attal, M., Cowie, P.A., Tucker, G.E., Roberts, G.P., (2008). Decoding temporal and spatial patterns of fault uplift using transient river long profiles. Geomorphology, 100, 506-526.
Willet, S.D., (1999). Orogeny and orography: The effects of erosion on the structure of mountain belts. Journal of Geophysical Research, 104, B12, 28957-28981.
Willet, S.D., (2010). Erosion on a line. Tectonophysics, 484, 168-180.
Willett, S.D., Brandon, M. T., (2002). On steady states in mountain belts. Geology, 30(2), 175.
Willett, S.D., Fisher, D., Fuller, C., En-Chao, Y., Chia-Yu, L., (2003). Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945.
Wobus, C.W., Hodges, K.V., Whipple, K.X., (2003). Has focus denudation sustained active thrusting at the Himalayan topographic front? Geological Society of America, 31, 10, 861-864.
Wobus, C.W., Crosby B.T., Whipple, K.X., (2006). Hanging valleys in fluvial systems: Controls on occurrence and implications for landscape evolution. Journal of Geophysical Research, 111, F02017.
Yamato, P., Mouthereau, F., Burov, E., (2009). Taiwan mountain building: insights from 2-D thermomechanical modelling of a rheologically stratified lithosphere, Geophysical Journal International, 176(1), 307–326.
Yang, T-N., Lee, T-Q., Meyers, P.A., Song, S-R., Kao, S-J., Löwemark, L., Chen, R-F., (2011). Variations in monsoonal rainfall over the last 21 kyr inferred from sedimentary organic matter in Tung-Yuan Pond, southern Taiwan. Quaternary Science Reviews, 30(23-24), 3413–3422.
Ye, F-Y., Barriot, J.P., Carretier, S., (2013). Initiation and recession of the fluvial knickpoints of the Island of Tahiti (French Polynesia). Geomorphology, 186, 162-173.
Yen, J-Y., (2003). Provenance of Miocene sedimentary sequences in Hengchun Peninsula, southern Taiwan and implications for the modern Taiwan orogen. PhD thesis, The Florida State University (not published).
Zhang, X., Yan, Y., Huang, C-Y., Chen, D., Shan, Y., Lan, Q., Chen, W., Yu, M., (2014). Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance. Journal of Asian Earth Sciences, 85, 26-39.
Yu, S-B., Chen, H-Y. and Kuo, L-C. (1997). Velocity field of GPS stations in the Taiwan area: Tectonophysics, 274, 41-59.
林錫宏 (2010) 大規模岩坡的山崩潛勢判釋與危險度評估。經濟部99年度臺加技術合作訓練計畫,研習報告,共61頁。




指導教授 張中白(Chang Chung-Pai) 審核日期 2015-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明