參考文獻 |
1. Kong, F.-T.; Dai, S.-Y.; Wang, K.-J. Review of Recent Progress in Dye-Sensitized Solar Cells. Advances in OptoElectronics 2007, 75384.
2. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. J Appl Phys 2005, 98, -.
3. Look, D. C. Recent advances in ZnO materials and devices. Materials Science and Engineering: B 2001, 80, 383-387.
4. Yousefi, R.; Zak, A. K.; Jamali-Sheini, F. The effect of group-I elements on the structural and optical properties of ZnO nanoparticles. Ceramics International 2013, 39, 1371-1377.
5. Guo, C. X.; Dong, Y.; Yang, H. B.; Li, C. M. Graphene Quantum Dots as a Green Sensitizer to Functionalize ZnO Nanowire Arrays on F-Doped SnO2 Glass for Enhanced Photoelectrochemical Water Splitting. Advanced Energy Materials 2013, 3, 997-1003.
6. Fortunato, E.; Barquinha, P.; Pimentel, A.; Gonçalves, A.; Marques, A.; Pereira, L.; Martins, R. Recent advances in ZnO transparent thin film transistors. Thin Solid Films 2005, 487, 205-211.
7. Yun, F.; Moon, Y. T.; Fu, Y.; Zhu, K.; Ozgur, U.; Morkoc, H.; Inoki, C. K.; Kuan, T. S.; Sagar, A.; Feenstra, R. M. Efficacy of single and double SiNx interlayers on defect reduction in GaN overlayers grown by organometallic vapor-phase epitaxy. J Appl Phys 2005, 98.
8. Heo, Y. W.; Norton, D. P.; Tien, L. C.; Kwon, Y.; Kang, B. S.; Ren, F.; Pearton, S. J.; LaRoche, J. R. ZnO nanowire growth and devices. Materials Science and Engineering: R: Reports 2004, 47, 1-47.
9. Yi, G.-C.; Wang, C.; Park, W. I. ZnO nanorods: synthesis, characterization and applications. Semiconductor Science and Technology 2005, 20, S22.
10. Park, W. I.; Yi, G. C. Electroluminescence in n-ZnO Nanorod Arrays Vertically Grown on p-GaN. Advanced Materials 2004, 16, 87-90.
11. Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P. Efficient field emission from ZnO nanoneedle arrays. Applied Physics Letters 2003, 83, 144-146.
12. Wang, W. Z.; Zeng, B. Q.; Yang, J.; Poudel, B.; Huang, J. Y.; Naughton, M. J.; Ren, Z. F. Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission. Advanced Materials 2006, 18, 3275-3278.
13. Wei, T.-Y.; Yeh, P.-H.; Lu, S.-Y.; Wang, Z. L. Gigantic Enhancement in Sensitivity Using Schottky Contacted Nanowire Nanosensor. Journal of the American Chemical Society 2009, 131, 17690-17695.
14. Yeh, P.-H.; Li, Z.; Wang, Z. L. Schottky-Gated Probe-Free ZnO Nanowire Biosensor. Advanced Materials 2009, 21, 4975-4978.
15. Zhou, J.; Gu, Y.; Hu, Y.; Mai, W.; Yeh, P.-H.; Bao, G.; Sood, A. K.; Polla, D. L.; Wang, Z. L. Gigantic enhancement in response and reset time of ZnO UV nanosensor by utilizing Schottky contact and surface functionalization. Applied Physics Letters 2009, 94, 191103.
16. Law, M.; Greene, L. E.; Johnson, J. C.; Saykally, R.; Yang, P. Nanowire dye-sensitized solar cells. Nat Mater 2005, 4, 455-459.
17. Weintraub, B.; Wei, Y.; Wang, Z. L. Optical Fiber/Nanowire Hybrid Structures for Efficient Three-Dimensional Dye-Sensitized Solar Cells. Angewandte Chemie International Edition 2009, 48, 8981-8985.
18. Wei, Y.; Xu, C.; Xu, S.; Li, C.; Wu, W.; Wang, Z. L. Planar Waveguide−Nanowire Integrated Three-Dimensional Dye-Sensitized Solar Cells. Nano Letters 2010, 10, 2092-2096.
19. Wang, Z. L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242-246.
20. Wang, X.; Song, J.; Liu, J.; Wang, Z. L. Direct-Current Nanogenerator Driven by Ultrasonic Waves. Science 2007, 316, 102-105.
21. Xu, S.; Wang, Z. One-dimensional ZnO nanostructures: Solution growth and functional properties. Nano Research 2011, 4, 1013-1098.
22. Cheng, H.-M.; Chiu, W.-H.; Lee, C.-H.; Tsai, S.-Y.; Hsieh, W.-F. Formation of Branched ZnO Nanowires from Solvothermal Method and Dye-Sensitized Solar Cells Applications. The Journal of Physical Chemistry C 2008, 112, 16359-16364.
23. Martinson, A. B. F.; Elam, J. W.; Hupp, J. T.; Pellin, M. J. ZnO Nanotube Based Dye-Sensitized Solar Cells. Nano Letters 2007, 7, 2183-2187.
24. Wang, X.; Ding, Y.; Summers, C. J.; Wang, Z. L. Large-Scale Synthesis of Six-Nanometer-Wide ZnO Nanobelts. The Journal of Physical Chemistry B 2004, 108, 8773-8777.
25. Kar, S.; Dev, A.; Chaudhuri, S. Simple solvothermal route to synthesize ZnO nanosheets, nanonails, and well-aligned nanorod arrays. The journal of physical chemistry. B 2006, 110, 17848-53.
26. Zhong Lin, W. Zinc oxide nanostructures: growth, properties and applications. Journal of Physics: Condensed Matter 2004, 16, R829.
27. Ko, S. H.; Lee, D.; Kang, H. W.; Nam, K. H.; Yeo, J. Y.; Hong, S. J.; Grigoropoulos, C. P.; Sung, H. J. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell. Nano Letters 2011, 11, 666-671.
28. Zhang, Q.; Dandeneau, C. S.; Zhou, X.; Cao, G. ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials 2009, 21, 4087-4108.
29. Vayssieres, L.; Keis, K.; Lindquist, S.-E.; Hagfeldt, A. Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO. The Journal of Physical Chemistry B 2001, 105, 3350-3352.
30. Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Nanobelts of Semiconducting Oxides. Science 2001, 291, 1947-1949.
31. Yuan, H.; Zhang, Y. Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD. Journal of Crystal Growth 2004, 263, 119-124.
32. Sun, Y.; Fuge, G. M.; Ashfold, M. N. R. Growth of aligned ZnO nanorod arrays by catalyst-free pulsed laser deposition methods. Chemical Physics Letters 2004, 396, 21-26.
33. Chiou, W.-T.; Wu, W.-Y.; Ting, J.-M. Growth of single crystal ZnO nanowires using sputter deposition. Diamond and Related Materials 2003, 12, 1841-1844.
34. Baruah, S.; Dutta, J. pH-dependent growth of zinc oxide nanorods. Journal of Crystal Growth 2009, 311, 2549-2554.
35. Liu, B.; Zeng, H. C. Room Temperature Solution Synthesis of Monodispersed Single-Crystalline ZnO Nanorods and Derived Hierarchical Nanostructures. Langmuir 2004, 20, 4196-4204.
36. Demianets, L. N.; Kostomarov, D. V.; Kuz’mina, I. P.; Pushko, S. V. Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions. Crystallogr. Rep. 2002, 47, S86-S98.
37. Kawska, A.; Duchstein, P.; Hochrein, O.; Zahn, D. Atomistic Mechanisms of ZnO Aggregation from Ethanolic Solution: Ion Association, Proton Transfer, and Self-Organization. Nano Letters 2008, 8, 2336-2340.
38. Viswanatha, R.; Amenitsch, H.; Sarma, D. D. Growth Kinetics of ZnO Nanocrystals: A Few Surprises. Journal of the American Chemical Society 2007, 129, 4470-4475.
39. Guo, L.; Ji, Y. L.; Xu, H.; Simon, P.; Wu, Z. Regularly Shaped, Single-Crystalline ZnO Nanorods with Wurtzite Structure. Journal of the American Chemical Society 2002, 124, 14864-14865.
40. Liu, J.; Huang, X.; Li, Y.; Ji, X.; Li, Z.; He, X.; Sun, F. Vertically Aligned 1D ZnO Nanostructures on Bulk Alloy Substrates: Direct Solution Synthesis, Photoluminescence, and Field Emission. The Journal of Physical Chemistry C 2007, 111, 4990-4997.
41. Vayssieres, L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Advanced Materials 2003, 15, 464-466.
42. Cheng, C.; Yan, B.; Wong, S. M.; Li, X.; Zhou, W.; Yu, T.; Shen, Z.; Yu, H.; Fan, H. J. Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays. ACS Applied Materials & Interfaces 2010, 2, 1824-1828.
43. Greene, L. E.; Law, M.; Goldberger, J.; Kim, F.; Johnson, J. C.; Zhang, Y.; Saykally, R. J.; Yang, P. Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays. Angewandte Chemie International Edition 2003, 42, 3031-3034.
44. Liu, T.-Y.; Liao, H.-C.; Lin, C.-C.; Hu, S.-H.; Chen, S.-Y. Biofunctional ZnO Nanorod Arrays Grown on Flexible Substrates. Langmuir 2006, 22, 5804-5809.
45. Qin, Y.; Wang, X.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809-813.
46. Bae, J.; Song, M. K.; Park, Y. J.; Kim, J. M.; Liu, M.; Wang, Z. L. Fiber Supercapacitors Made of Nanowire-Fiber Hybrid Structures for Wearable/Flexible Energy Storage. Angewandte Chemie International Edition 2011, 50, 1683-1687.
47. Na, J.-S.; Gong, B.; Scarel, G.; Parsons, G. N. Surface Polarity Shielding and Hierarchical ZnO Nano-Architectures Produced Using Sequential Hydrothermal Crystal Synthesis and Thin Film Atomic Layer Deposition. ACS Nano 2009, 3, 3191-3199.
48. Teng, M.; Min, G.; Mei, Z.; Yanjun, Z.; Xidong, W. Density-controlled hydrothermal growth of well-aligned ZnO nanorod arrays. Nanotechnology 2007, 18, 035605.
49. Hsiao, C.-S.; Peng, C.-H.; Chen, S.-Y.; Liou, S.-C. Tunable growth of ZnO nanorods synthesized in aqueous solutions at low temperatures. Journal of Vacuum Science & Technology B 2006, 24, 288-291.
50. Jijun, Q.; Xiaomin, L.; Weizhen, H.; Se-Jeong, P.; Hyung-Kook, K.; Yoon-Hwae, H.; Jae-Ho, L.; Yang-Do, K. The growth mechanism and optical properties of ultralong ZnO nanorod arrays with a high aspect ratio by a preheating hydrothermal method. Nanotechnology 2009, 20, 155603.
51. Cao, X.; Zeng, H.; Wang, M.; Xu, X.; Fang, M.; Ji, S.; Zhang, L. Large Scale Fabrication of Quasi-Aligned ZnO Stacking Nanoplates. The Journal of Physical Chemistry C 2008, 112, 5267-5270.
52. Peterson, R. B.; Fields, C. L.; Gregg, B. A. Epitaxial Chemical Deposition of ZnO Nanocolumns from NaOH Solutions. Langmuir 2004, 20, 5114-5118.
53. Zhou, Z.; Deng, Y. Kinetics Study of ZnO Nanorod Growth in Solution. The Journal of Physical Chemistry C 2009, 113, 19853-19858.
54. Liu, K.; Sakurai, M.; Aono, M. ZnO-Based Ultraviolet Photodetectors. Sensors 2010, 10, 8604-8634.
55. Monroy, E.; Calle, F.; Pau, J. L.; Muñoz, E.; Omnès, F.; Beaumont, B.; Gibart, P. AlGaN-based UV photodetectors. Journal of Crystal Growth 2001, 230, 537-543.
56. Muñoz, E.; Monroy, E.; Pau, J. L.; Calle, F.; Omnès, F.; Gibart, P. III nitrides and UV detection. Journal of Physics: Condensed Matter 2001, 13, 7115.
57. Yu-Zung, C.; Jing-Jou, T. GaN Photodetectors with Transparent Indium Tin Oxide Electrodes. Japanese Journal of Applied Physics 2004, 43, 4146.
58. Pearton, S. J.; Norton, D. P.; Ip, K.; Heo, Y. W.; Steiner, T. Recent advances in processing of ZnO. Journal of Vacuum Science & Technology B 2004, 22, 932-948.
59. Mollow, E. Proceedings of the Photoconductivity Conference. Wiley: New York, NY, USA 1954.
60. Fabricius, H.; Skettrup, T.; Bisgaard, P. Ultraviolet detectors in thin sputtered ZnO films. Appl. Opt. 1986, 25, 2764-2767.
61. Ohta, H.; Hirano, M.; Nakahara, K.; Maruta, H.; Tanabe, T.; Kamiya, M.; Kamiya, T.; Hosono, H. Fabrication and photoresponse of a pn-heterojunction diode composed of transparent oxide semiconductors, p-NiO and n-ZnO. Applied Physics Letters 2003, 83, 1029-1031.
62. Alivov, Y. I.; Özgür, Ü.; Doğan, S.; Johnstone, D.; Avrutin, V.; Onojima, N.; Liu, C.; Xie, J.; Fan, Q.; Morkoç, H. Photoresponse of n-ZnO∕p-SiC heterojunction diodes grown by plasma-assisted molecular-beam epitaxy. Applied Physics Letters 2005, 86, 241108 - 241108-3.
63. Kosyachenko, L. A.; Lashkarev, G. V.; Sklyarchuk, V. M.; Ievtushenko, A. I.; Sklyarchuk, O. F.; Lazorenko, V. I.; Ulyashin, A. ZnO-based photodetector with internal photocurrent gain. physica status solidi (a) 2010, 207, 1972-1977.
64. Zhu, H.; Shan, C. X.; Yao, B.; Li, B. H.; Zhang, J. Y.; Zhao, D. X.; Shen, D. Z.; Fan, X. W. High Spectrum Selectivity Ultraviolet Photodetector Fabricated from an n-ZnO/p-GaN Heterojunction. The Journal of Physical Chemistry C 2008, 112, 20546-20548.
65. Park, C. H.; Jeong, I. S.; Kim, J. H.; Im, S. Spectral responsivity and quantum efficiency of n-ZnO/p-Si photodiode fully isolated by ion-beam treatment. Applied Physics Letters 2003, 82, 3973-3975.
66. Jeong, I.-S.; Kim, J. H.; Im, S. Ultraviolet-enhanced photodiode employing n-ZnO/p-Si structure. Applied Physics Letters 2003, 83, 2946-2948.
67. Goetzberger, A.; Hebling, C. Photovoltaic materials, past, present, future. Solar Energy Materials and Solar Cells 2000, 62, 1-19.
68. Goetzberger, A.; Hebling, C.; Schock, H.-W. Photovoltaic materials, history, status and outlook. Materials Science and Engineering: R: Reports 2003, 40, 1-46.
69. Bagnall, D. M.; Boreland, M. Photovoltaic technologies. Energy Policy 2008, 36, 4390-4396.
70. Green, M. A. Recent developments in photovoltaics. Solar Energy 2004, 76, 3-8.
71. Oliver, M.; Jackson, T. The market for solar photovoltaics. Energy Policy 1999, 27, 371-385.
72. Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 1954, 25, 676-677.
73. Bergmann, R. B. Crystalline Si thin-film solar cells: a review. Applied Physics A 1999, 69, 187-194.
74. Shah, A.; Torres, P.; Tscharner, R.; Wyrsch, N.; Keppner, H. Photovoltaic Technology: The Case for Thin-Film Solar Cells. Science 1999, 285, 692-698.
75. Carlson, D. E.; Wronski, C. R. Amorphous silicon solar cell. Applied Physics Letters 1976, 28, 671-673.
76. Yang, J.; Banerjee, A.; Guha, S. Amorphous silicon based photovoltaics—from earth to the “final frontier”. Solar Energy Materials and Solar Cells 2003, 78, 597-612.
77. Sana, P.; Salami, J.; Rohatgi, A. Fabrication and Analysis of High-Efficiency Polycrystalline Silicon Solar-Cells. Ieee Transactions on Electron Devices 1993, 40, 1461-1468.
78. Ward, J. S.; Ramanathan, K.; Hasoon, F. S.; Coutts, T. J.; Keane, J.; Contreras, M. A.; Moriarty, T.; Noufi, R. A 21.5% efficient Cu(In,Ga)Se2 thin-film concentrator solar cell. Progress in Photovoltaics: Research and Applications 2002, 10, 41-46.
79. Afzaal, M.; O′Brien, P. Recent developments in II-VI and III-VI semiconductors and their applications in solar cells. Journal of Materials Chemistry 2006, 16, 1597-1602.
80. Schock, H. W. Thin film photovoltaics. Applied Surface Science 1996, 92, 606-616.
81. Birkmire, R. W. Compound polycrystalline solar cells:: Recent progress and Y2 K perspective. Solar Energy Materials and Solar Cells 2001, 65, 17-28.
82. Liu, J.; Cao, G.; Yang, Z.; Wang, D.; Dubois, D.; Zhou, X.; Graff, G. L.; Pederson, L. R.; Zhang, J. G. Oriented nanostructures for energy conversion and storage. ChemSusChem 2008, 1, 676-97.
83. O′Regan, B.; Gratzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353, 737-740.
84. Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells. Journal of the American Chemical Society 2001, 123, 1613-1624.
85. Nelson, J.; Chandler, R. E. Random walk models of charge transfer and transport in dye sensitized systems. Coordination Chemistry Reviews 2004, 248, 1181-1194.
86. Nissfolk, J.; Fredin, K.; Hagfeldt, A.; Boschloo, G. Recombination and Transport Processes in Dye-Sensitized Solar Cells Investigated under Working Conditions. The Journal of Physical Chemistry B 2006, 110, 17715-17718.
87. Grätzel, M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorganic Chemistry 2005, 44, 6841-6851.
88. Grätzel, M. Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164, 3-14.
89. Vafaee, M.; Ghamsari, M. S. Preparation and characterization of ZnO nanoparticles by a novel sol–gel route. Materials Letters 2007, 61, 3265-3268.
90. Kar, S.; Dev, A.; Chaudhuri, S. Simple Solvothermal Route To Synthesize ZnO Nanosheets, Nanonails, and Well-Aligned Nanorod Arrays. The Journal of Physical Chemistry B 2006, 110, 17848-17853.
91. Li, Q.; Kumar, V.; Li, Y.; Zhang, H.; Marks, T. J.; Chang, R. P. H. Fabrication of ZnO Nanorods and Nanotubes in Aqueous Solutions. Chemistry of Materials 2005, 17, 1001-1006.
92. Fu, M.; Zhou, J.; Xiao, Q.; Li, B.; Zong, R.; Chen, W.; Zhang, J. ZnO Nanosheets with Ordered Pore Periodicity via Colloidal Crystal Template Assisted Electrochemical Deposition. Advanced Materials 2006, 18, 1001-1004.
93. Pal, U.; Serrano, J. G.; Santiago, P.; Xiong, G.; Ucer, K. B.; Williams, R. T. Synthesis and optical properties of ZnO nanostructures with different morphologies. Optical Materials 2006, 29, 65-69.
94. Liu, J.-M. Photonic Devices. 2005.
95. Bahaa E. A. Saleh, M. C. T. Fundamentals of Photonics. 2007, 1200.
96. Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M. Dye-sensitized solar cells: A brief overview. Solar Energy 2011, 85, 1172-1178.
97. Hagfeldt, A.; Graetzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chemical Reviews 1995, 95, 49-68.
98. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Graetzel, M. Conversion of light to electricity by cis-X2bis(2,2′-bipyridyl-4,4′-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115, 6382-6390.
99. Gondoni, P.; Ghidelli, M.; Di Fonzo, F.; Russo, V.; Bruno, P.; Martí-Rujas, J.; Bottani, C. E.; Li Bassi, A.; Casari, C. S. Structural and functional properties of Al:ZnO thin films grown by Pulsed Laser Deposition at room temperature. Thin Solid Films 2012, 520, 4707-4711.
100. Kaushik, V. K.; Ganguli, T.; Kumar, R.; Mukherjee, C.; Sen, P. K. Growth and characterization of ZnO and MgxZn1 − xO thin films by aerosol assisted chemical vapor deposition technique. Thin Solid Films 2012, 520, 3505-3509.
101. Yildiz, A.; Serin, T.; Öztürk, E.; Serin, N. Barrier-controlled electron transport in Sn-doped ZnO polycrystalline thin films. Thin Solid Films 2012, 522, 90-94.
102. Lin, S.-S.; Huang, J.-L.; Šajgalik, P. The properties of Ti-doped ZnO films deposited by simultaneous RF and DC magnetron sputtering. Surface and Coatings Technology 2005, 191, 286-292.
103. Paul, G. K.; Bandyopadhyay, S.; Sen, S. K.; Sen, S. Structural, optical and electrical studies on sol–gel deposited Zr doped ZnO films. Materials Chemistry and Physics 2003, 79, 71-75.
104. Zhu, B. L.; Xie, C. S.; Zeng, D. W.; Song, W. L.; Wang, A. H. Investigation of gas sensitivity of Sb-doped ZnO nanoparticles. Materials Chemistry and Physics 2005, 89, 148-153.
105. Li, Q.; Cheng, K.; Weng, W.; Du, P.; Han, G. Synthesis, characterization and electrochemical behavior of Sb-doped ZnO microsphere film. Thin Solid Films 2013, 544, 466-471.
106. Lin, J. C.; Peng, K. C.; Liao, H. L.; Lee, S. L. Transparent conducting Sc-codoped AZO film prepared from ZnO:Al-Sc by RF-DC sputtering. Thin Solid Films 2008, 516, 6-6.
107. Lin, J.-C.; Peng, K.-C.; Tseng, C. A.; Lee, S.-L. Deposition of Al-doped and Al, Sc-co-doped zinc oxide films by RF- and DC-sputtering of the ZnO and Al–xSc (x = 0, 0.4, 0.8 and 1.7 wt.%) targets. Surface and Coatings Technology 2008, 202, 5480-5483.
108. Hahn, N. T.; Mullins, C. B. Photoelectrochemical Performance of Nanostructured Ti- and Sn-Doped α-Fe2O3 Photoanodes. Chemistry of Materials 2010, 22, 6474-6482.
109. Pan, Z.; Zhang, P.; Tian, X.; Cheng, G.; Xie, Y.; Zhang, H.; Zeng, X.; Xiao, C.; Hu, G.; Wei, Z. Properties of fluorine and tin co-doped ZnO thin films deposited by sol–gel method. Journal of Alloys and Compounds 2013, 576, 31-37.
110. Qu, X.; Lü, S.; Jia, D.; Zhou, S.; Meng, Q. First-principles study of the electronic structure of Al and Sn co-doping ZnO system. Materials Science in Semiconductor Processing 2013, 16, 1057-1062.
111. Poziquan Formation. In Geological Formation Names of China (1866–2000), Zhang, S., Ed. Springer Berlin Heidelberg: 2009; pp 865-865.
112. Jothilakshmi, R.; Ramakrishnan, V.; Thangavel, R.; Kumar, J.; Sarua, A.; Kuball, M. Micro-Raman scattering spectroscopy study of Li-doped and undoped ZnO needle crystals. Journal of Raman Spectroscopy 2009, 40, 556-561.
113. Musić, S.; Dragčević, Đ.; Popović, S.; Ivanda, M. Precipitation of ZnO particles and their properties. Materials Letters 2005, 59, 2388-2393.
114. Chen, K. J.; Fang, T. H.; Hung, F. Y.; Ji, L. W.; Chang, S. J.; Young, S. J.; Hsiao, Y. J. The crystallization and physical properties of Al-doped ZnO nanoparticles. Applied Surface Science 2008, 254, 5791-5795.
115. Manabu, G.; Naoko, O.; Kenichi, O.; Mikio, K. Photoluminescent and Structural Properties of Precipitated ZnO Fine Particles. Japanese Journal of Applied Physics 2003, 42, 481.
116. Tian, X.; Pan, Z.; Zhang, H.; Fan, H.; Zeng, X.; Xiao, C.; Hu, G.; Wei, Z. Growth and characterization of the Al-doped and Al–Sn co-doped ZnO nanostructures. Ceramics International 2013, 39, 6497-6502.
117. Pan, Z.; Tian, X.; Wu, S.; Yu, X.; Li, Z.; Deng, J.; Xiao, C.; Hu, G.; Wei, Z. Investigation of structural, optical and electronic properties in Al–Sn co-doped ZnO thin films. Applied Surface Science 2013, 265, 870-877.
118. Park, K. C.; Ma, D. Y.; Kim, K. H. The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering. Thin Solid Films 1997, 305, 201-209.
119. Lin, J.-C.; Peng, K.-C.; Liao, H.-L.; Lee, S.-L. Transparent conducting Sc-codoped AZO film prepared from ZnO:Al–Sc by RF-DC sputtering. Thin Solid Films 2008, 516, 5349-5354.
120. Lee, J.-H.; Park, B.-O. Transparent conducting ZnO:Al, In and Sn thin films deposited by the sol–gel method. Thin Solid Films 2003, 426, 94-99.
121. Ilican, S.; Caglar, M.; Caglar, Y. Sn doping effects on the electro-optical properties of sol gel derived transparent ZnO films. Applied Surface Science 2010, 256, 7204-7210.
122. Mazilu, M.; Tigau, N.; Musat, V. Optical properties of undoped and Al-doped ZnO nanostructures grown from aqueous solution on glass substrate. Optical Materials 2012, 34, 1833-1838.
123. Minami, T.; Kakumu, T.; Takeda, Y.; Takata, S. Highly transparent and conductive ZnO:In2O3 thin films prepared by d.c. magnetron sputtering. Thin Solid Films 1996, 290–291, 1-5.
124. Raoufi, D.; Raoufi, T. The effect of heat treatment on the physical properties of sol–gel derived ZnO thin films. Applied Surface Science 2009, 255, 5812-5817.
125. Tsay, C.-Y.; Fan, K.-S.; Wang, Y.-W.; Chang, C.-J.; Tseng, Y.-K.; Lin, C.-K. Transparent semiconductor zinc oxide thin films deposited on glass substrates by sol–gel process. Ceramics International 2010, 36, 1791-1795.
126. Kim, Y.-S.; Tai, W.-P. Electrical and optical properties of Al-doped ZnO thin films by sol–gel process. Applied Surface Science 2007, 253, 4911-4916.
127. Pan, Z.; Tian, X.; Wu, S.; Xiao, C.; Li, Z.; Deng, J.; Hu, G.; Wei, Z. Effects of Al and Sn dopants on the structural and optical properties of ZnO thin films. Superlattices and Microstructures 2013, 54, 107-117.
128. Li, X.-L.; Wang, Z.-L.; Qin, X.-F.; Wu, H.-S.; Xu, X.-H.; Gehring, G. A. Enhancement of magnetic moment of Co-doped ZnO films by postannealing in vacuum. Journal of Applied Physics 2008, 103, 023911-023911-5.
129. Kim, J.; Kim, M.-c.; Yu, J.; Park, K. H2/Ar and vacuum annealing effect of ZnO thin films deposited by RF magnetron sputtering system. Current Applied Physics 2010, 10, S495-S498.
130. Tong, H.; Deng, Z.; Liu, Z.; Huang, C.; Huang, J.; Lan, H.; Wang, C.; Cao, Y. Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films. Applied Surface Science 2011, 257, 4906-4911.
131. Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.
132. Tseng, C.-J.; Wang, C.-H.; Cheng, K.-W. Photoelectrochemical performance of gallium-doped AgInS2 photoelectrodes prepared by electrodeposition process. Solar Energy Materials and Solar Cells 2012, 96, 33-42.
133. Özgür, Ü.; Alivov, Y. I.; Liu, C.; Teke, A.; Reshchikov, M. A.; Doğan, S.; Avrutin, V.; Cho, S.-J.; Morkoç, H. A comprehensive review of ZnO materials and devices. Journal of Applied Physics 2005, 98, 041301-1-041301-103.
134. Oskam, G.; Hu, Z.; Penn, R. L.; Pesika, N.; Searson, P. C. Coarsening of metal oxide nanoparticles. Physical Review E 2002, 66, 011403.
135. Bae, H. S.; Yoon, M. H.; Kim, J. H.; Im, S. Photodetecting properties of ZnO-based thin-film transistors. Applied Physics Letters 2003, 83, 5313-5315.
136. Keis, K.; Roos, A. Optical characterization of nanostructured ZnO and TiO2 films. Optical Materials 2002, 20, 35-42.
137. Noack, V.; Weller, H.; Eychmüller, A. Electron Transport in Particulate ZnO Electrodes: A Simple Approach. The Journal of Physical Chemistry B 2002, 106, 8514-8523.
138. Jih-Jen, W.; Guan-Ren, C.; Chia-Chun, L.; Wei-Ting, W.; Jen-Sue, C. Performance and electron transport properties of TiO 2 nanocomposite dye-sensitized solar cells. Nanotechnology 2008, 19, 105702.
|