博碩士論文 101222001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.226.82.220
姓名 柯億謙(Yi-chien Ke)  查詢紙本館藏   畢業系所 物理學系
論文名稱 石墨烯與超導金屬介面的電子穿隧行為
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 實驗觀測混合式單電子箱中之共同穿隧事件★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討
★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測
★ 二維電子氣體中量子點接觸 與量子點製作及量測★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為
★ 單一超導量子位元控制與狀態讀取★ 超導量子干涉元件製作
★ 工程化超導電路上三維腔量子電動力學系統★ Characterizing single-qubit gate fidelity on superconducting qubits
★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator★ 超導雙量子位元電路的實現
★ Developing Flux-Driven Josephson Parametric Amplifer★ 全電子束微影製程的共平面波導與超導量子位元耦合系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電子在超導體中以古柏對形式存在,古柏對是量子糾纏電子對,可以透過交叉式安德烈夫反射將古柏對裡的兩個電子分別穿隧至兩個空間上分離的一般金屬,這種空間上分離的糾纏電子對可以應用在固態量子傳輸上。為了提高古柏對分裂的效率,可以利用兩個有不同電荷傳輸載子類型的半導體來取代一般金屬,因為p型半導體(n型半導體)只允許電洞(電子)存在於超導體/半導體介面。
我們製作石墨烯/鋁/石墨烯元件,鋁金屬在溫度1.1K以下為超導體,石墨烯與鋁金屬介面透過穿隧屏障相接,兩塊石墨烯有一個全域的下閘極以及兩個獨立的上閘極來調控其載子種類與濃度。本論文研究元件的二階(2nd order)電子穿隧行為,包括古柏對分裂與彈性共同穿隧。
透過非局部電壓以及電流-電流交互關係量測,分析實驗所得到的數據,我們主要觀察到電子彈性共同穿隧行為,而且鋁在超導狀態下,彈性共同穿隧行為更明顯;另外在下閘極電壓Vbg=10V附近的區域石墨烯分別為p-type與n-type,使元件處於p-type石墨烯/超導體/n-type石墨烯(pSn)狀態,非局部電壓量測的結果,在Vbg=10V,非局部電壓有極小值,可能暗示古柏對分裂,但是由於上閘極品質不佳,無法獨立調控兩個石墨烯載子濃度,使元件處於pSn狀態,所以尚未有系統性的研究石墨烯pSn元件的電荷傳輸行為。
摘要(英) Cooper pair in superconductor is a quantum entangled object and could split into two spatially-separate normal metals via crossed Andreev reflection. Such spatially-separate entangled electron pair may have applications to solid-state quantum teleportation. To achieve high efficiency of Cooper pair splitting (CPS), two semiconductors with opposite polarities are proposed to replace two normal metals due to either electron or hole is missing in both superconductor/semiconductor interfaces.
We fabricated graphene/aluminum/graphene devices. Aluminum becomes superconducting below 1.1K and it links to two graphene grains via tunneling barriers. Each graphene can be tuned electrically by a global bottom-gate and a local top-gate. This thesis reported studies of electrons 2nd-order tunneling events in the devices, including CPS and elastic cotunneling (EC).
According to the non-local voltage and current-current correlation measurements, we mostly observed EC. EC is enhanced when the aluminum becomes superconducting. In a small region near Vbg=10V, two graphene grains have opposite polarities, making a p-type graphene/superconductor/n-type graphene (pSn) device. We found minimum value of non-local voltage when Vbg=10V. The decrease of nonlocal voltage implies CPS. Because the low quality of top-gates, we are unable to vary carrier density of two graphene grains independently. Therefore, we cannot make pSn device reliably. The study of electrons tunneling events in pSn device requires further investigation.
關鍵字(中) ★ 石墨烯
★ 半導體/超導體混合式元件
★ 古柏對分裂
★ 彈性共同穿隧
關鍵字(英)
論文目次 目錄
摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 xi
Chapter 1 背景知識 1
1.1 前言 1
1.2一般金屬與超導金屬介面的電子傳輸 1
1.2.1 安德烈夫反射(Andreev reflection,AR) 2
1.2.2 彈性共同穿隧(Elastic cotunneling)與古柏對分裂(Cooper pair splitting) 3
1.3 文獻探討 5
1.4石墨烯(Graphene) 10
1.5單層石墨烯的拉曼光譜 12
Chapter 2 實驗方法與量測 14
2.1 石墨烯製程 15
2.1.1儀器介紹 17
2.1.2石墨烯成長 17
2.1.3石墨烯轉印 19
2.2 元件製程 20
2.2.1電子束微影(E-Beam Lithography) 20
2.2.2電子槍蒸鍍系統(E-Gun Evaporator System) 22
2.2.3熱蒸鍍系統(Thermal Evaporator System) 23
2.2.4石墨烯定位 24
2.2.5元件圖形曝寫 25
2.2.6高溫退火 26
2.2.7 Top-Gate製作 26
2.3 量測架設與方法 28
2.3.1循環式稀釋製冷機(Cryogen-Free Dilution Refrigerator System) 28
2.3.2自製樣品載台 29
2.3.3金屬導線連接系統 30
2.3.4基本直流、交流電性量測 30
2.3.5非局部電壓及電流-電流相互關係量測 31
Chapter 3 實驗結果與討論 33
3.1 石墨烯成長結果 33
3.2 元件退火以及閘極量測結果 35
3.3 基本電性量測結果 37
3.4 非局部電壓及電流-電流交互關係量測結果 41
Chapter 4 結論 48
4.1 結論 48
參考資料 49
參考文獻 1. Griffiths, D.J. and E.G. Harris, Introduction to quantum mechanics. Vol. 2. 1995: Prentice Hall New Jersey.
2. Blonder, G.E., M. Tinkham, and T.M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Physical Review B, 1982. 25(7): p. 4515-4532.
3. Byers, J.M. and M.E. Flatté, Probing Spatial Correlations with Nanoscale Two-Contact Tunneling. Physical Review Letters, 1995. 74(2): p. 306-309.
4. Kleine, A., et al., Contact resistance dependence of crossed Andreev reflection. EPL (Europhysics Letters), 2009. 87(2): p. 27011.
5. Wei, J. and V. Chandrasekhar, Positive noise cross-correlation in hybrid superconducting and normal-metal three-terminal devices. Nat Phys, 2010. 6(7): p. 494-498.
6. Veldhorst, M. and A. Brinkman, Nonlocal Cooper Pair Splitting in a p S n Junction. Physical Review Letters, 2010. 105(10): p. 107002.
7. Novoselov, K.S., et al., Electric Field Effect in Atomically Thin Carbon Films. Science, 2004. 306(5696): p. 666-669.
8. Abergel, D., et al., Properties of graphene: a theoretical perspective. Advances in Physics, 2010. 59(4): p. 261-482.
9. Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18): p. 187401.
10. Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103.
11. Li, X., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.
12. Luo, Z., et al., Growth mechanism of hexagonal-shape graphene flakes with zigzag edges. ACS nano, 2011. 5(11): p. 9154-9160.
13. Lin, Y.-C., et al., Graphene annealing: how clean can it be? Nano letters, 2011. 12(1): p. 414-419.
14. Meyer, J.C., et al., The structure of suspended graphene sheets. Nature, 2007. 446(7131): p. 60-63.
15. Miyazaki, H., et al., Resistance modulation of multilayer graphene controlled by the gate electric field. Semiconductor Science and Technology, 2010. 25(3): p. 034008.
16. BlueFors, BF‐LD250 CRYOGEN‐FREE DILUTION REFRIGERATOR SYSTEM User manual. 1.3.1 ed. 2011.
17. Vlassiouk, I., et al., Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene. ACS nano, 2011. 5(7): p. 6069-6076.
18. 陳嘉偉, Research of graphene for transparent conductive film and its growth model, 2012.
19. Losurdo, M., et al., Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics, 2011. 13(46): p. 20836-20843.
20. Yu, Q., et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater, 2011. 10(6): p. 443-449.
21. Russo, S., et al., Experimental Observation of Bias-Dependent Nonlocal Andreev Reflection. Physical Review Letters, 2005. 95(2): p. 027002.
指導教授 陳永富、郭倩丞 審核日期 2014-12-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明