參考文獻 |
[1] S. Chapman and T. G. Cowling. The Mathematical Theory of Non-uniform
Gases. Cambridge University Press, Cambridge, 3 edition, 1990.
[2] Mikhail Dzugutov. A universal scaling law for atomic diffusion in con-
densed matter. Nature (London), 381(6578):137{139, May 1996.
[3] John D. Weeks, David Chandler, and Hans C. Andersen. Role of repulsive
forces in determining the equilibrium structure of simple liquids. The
Journal of Chemical Physics, 54(12):5237{5247, 1971.
[4] Yoel Forterre Bruno Andreotti and Olivier Pouliquen. Granular Media:
Between Fluid and Solid. Cambridge University Press, Cambridge, 1st
edition, 2013.
[5] Rongxin Huang, Isaac Chavez, Katja M. Taute, Branimir Lukic, Sylvia
Jeney, Mark G. Raizen, and Ernst-Ludwig Florin. Direct observation of
the full transition from ballistic to diffusive brownian motion in a liquid.
Nat Phys, 7(7):576{580, July 2011.
[6] Simon Kheifets, Akarsh Simha, Kevin Melin, Tongcang Li, and Mark G.
Raizen. Observation of brownian motion in liquids at short times: Instan-
taneous velocity and memory loss. Science, 343(6178):1493{1496, 2014.
[7] G. Baxter and J. Olafsen. Experimental evidence for molecular chaos in
granular gases. Phys. Rev. Lett., 99:028001, Jul 2007.
55
[8] David Bray, Michael Swift, and P. King. Velocity statistics in dissipative,
dense granular media. Phys. Rev. E, 75:062301, Jun 2007. Theory.
[9] Z.A. Daya, E. Ben-Naim, and R.E. Ecke. Experimental characterization
of vibrated granular rings. The European Physical Journal E, 21(1):1{10,
2006.
[10] K. Kohlstedt, A. Snezhko, M. Sapozhnikov, I. Aranson, J. Olafsen, and
E. Ben-Naim. Velocity distributions of granular gases with drag and with
long-range interactions. Phys. Rev. Lett., 95:068001, Aug 2005.
[11] W. Losert, D. G. W. Cooper, J. Delour, A. Kudrolli, and J. P. Gollub.
Velocity statistics in excited granular media. Chaos: An Interdisciplinary
Journal of Nonlinear Science, 9(3):682{690, 1999.
[12] J. Olafsen and J. Urbach. Velocity distributions and density
uctuations
in a granular gas. Phys. Rev. E, 60:R2468{R2471, Sep 1999.
[13] G. W. Baxter and J. S. Olafsen. Kinetics: Gaussian statistics in granular
gases. Nature (London), 425(6959):680{680, October 2003.
[14] Michael Hay, Richard Workman, and Srinivas Manne. Two-dimensional
condensed phases from particles with tunable interactions. Phys. Rev. E,
67:012401, Jan 2003.
[15] X. Zheng and R. Grieve. Melting behavior of single two-dimensional crys-
tal. Phys. Rev. B, 73:064205, Feb 2006.
[16] J. Schockmel, E. Mersch, N. Vandewalle, and G. Lumay. Melting of a
conned monolayer of magnetized beads. Phys. Rev. E, 87:062201, Jun
2013.
56
[17] J.-C. Tsai, G. Voth, and J. Gollub. Internal granular dynamics, shear-
induced crystallization, and compaction steps. Phys. Rev. Lett., 91:064301,
Aug 2003.
[18] J. Olafsen and J. Urbach. Clustering, order, and collapse in a driven
granular monolayer. Phys. Rev. Lett., 81:4369{4372, Nov 1998.
[19] G. Straburger and I. Rehberg. Crystallization in a horizontally vibrated
monolayer of spheres. Phys. Rev. E, 62:2517{2520, Aug 2000.
[20] J. Olafsen and J. Urbach. Two-dimensional melting far from equilibrium
in a granular monolayer. Phys. Rev. Lett., 95:098002, Aug 2005.
[21] Kiwing To. Boltzmann distribution in a nonequilibrium steady state:
Measuring local potential by granular brownian particles. Phys. Rev. E,
89:062111, Jun 2014.
[22] W.-T. Lin, Y.-C. Sun, C.-C. Chang, Y.-C. Lin, C.-W. Peng, W.-T. Juan,
and J.-C. Tsai. Ratcheting and transitions: Short granular chain in a
gradient of vibration. Phys. Rev. Lett., 112:058001, Feb 2014.
[23] J Lema^tre, A Gervois, H Peerhossaini, D Bideau, and J-P Troadec. An
air table designed to study two-dimensional disc packings: preliminary
tests and rst results. J. Phys. D, 23(11):1396, 1990.
[24] R. P. Ojha, P.-A. Lemieux, P. K. Dixon, A. J. Liu, and D. J. Durian.
Statistical mechanics of a gas-
uidized particle. Nature, 427(6974):521{
523, February 2004.
[25] James Puckett, Frederic Lechenault, and Karen Daniels. Local origins of
volume fraction
uctuations in dense granular materials. Phys. Rev. E,
83:041301, Apr 2011.
57
[26] P Melby, F Vega Reyes, A Prevost, R Robertson, P Kumar, D A Egolf,
and J S Urbach. The dynamics of thin vibrated granular layers. Journal
of Physics: Condensed Matter, 17(24):S2689, 2005.
[27] Andreas Gotzendorfer, Jennifer Kreft, Christof Kruelle, and Ingo Rehberg.
Sublimation of a vibrated granular monolayer: Coexistence of gas and
solid. Phys. Rev. Lett., 95:135704, Sep 2005.
[28] J. Atwell and J. Olafsen. Anisotropic dynamics in a shaken granular dimer
gas experiment. Phys. Rev. E, 71:062301, Jun 2005.
[29] P. Reis, R. Ingale, and M. Shattuck. Crystallization of a quasi-two-
dimensional granular
uid. Phys. Rev. Lett., 96:258001, Jun 2006.
[30] Andrea J. Liu and Sidney R. Nagel. Nonlinear dynamics: Jamming is not
just cool any more. Nature, 396(6706):21{22, November 1998.
[31] See Soft Matter Volume 6 and the articles within.
[32] Kiwing To, Pik-Yin Lai, and H. Pak. Jamming of granular
ow in a
two-dimensional hopper. Phys. Rev. Lett., 86:71{74, Jan 2001.
[33] Malte Schmick and Mario Markus. Gaussian distributions of rotational
velocities in a granular medium. Phys. Rev. E, 78:010302, Jul 2008.
[34] Alexis Burdeau and Pascal Viot. Quasi-gaussian velocity distribution of
a vibrated granular bilayer system. Phys. Rev. E, 79:061306, Jun 2009.
Theory, simulation.
[35] E. Ben-Naim, Z. Daya, P. Vorobieff, and R. Ecke. Knots and random
walks in vibrated granular chains. Phys. Rev. Lett., 86:1414{1417, Feb
2001.
58
[36] Kevin Safford, Yacov Kantor, Mehran Kardar, and Arshad Kudrolli.
Structure and dynamics of vibrated granular chains: Comparison to equi-
librium polymers. Phys. Rev. E, 79:061304, Jun 2009.
[37] Pei-Ren Jeng, Kuan Hua Chen, Gwo-jen Hwang, Chenhsin Lien, Kiwing
To, and Y. C. Chou. Collapse kinetics of vibrated granular chains. The
Journal of Chemical Physics, 135(24):{, 2011.
[38] Pei-Ren Jeng, KuanHua Chen, Gwo-jen Hwang, Ethan Y. Cho, Chenhsin
Lien, Kiwing To, and Y. C. Chou. Entropic force on granular chains self-
extracting from one-dimensional connement. The Journal of Chemical
Physics, 140(2):{, 2014.
[39] Matt Harrington, Joost Weijs, and Wolfgang Losert. Suppression and
emergence of granular segregation under cyclic shear. Phys. Rev. Lett.,
111:078001, Aug 2013.
[40] Mitch Mailman, Matt Harrington, Michelle Girvan, and Wolfgang Losert.
Consequences of anomalous diffusion in disordered systems under cyclic
forcing. Phys. Rev. Lett., 112:228001, Jun 2014.
[41] James G. Puckett and Karen E. Daniels. Equilibrating temperaturelike
variables in jammed granular subsystems. Phys. Rev. Lett., 110:058001,
Jan 2013.
[42] Irene Ippolito, Chrystele Annic, Jacques Lema^tre, Luc Oger, and Daniel
Bideau. Granular temperature: Experimental analysis. Phys. Rev. E,
52:2072{2075, Aug 1995.
[43] A. Abate and D. Durian. Partition of energy for air-
uidized grains. Phys.
Rev. E, 72:031305, Sep 2005.
[44] A. Abate and D. Durian. Approach to jamming in an air-
uidized granular
bed. Phys. Rev. E, 74:031308, Sep 2006.
59
[45] F. Lechenault and Karen E. Daniels. Equilibration of granular subsystems.
Soft Matter, 6:3074{3081, 2010.
[46] M. E. Beverland, L. J. Daniels, and D. J. Durian. Air-
uidized balls in
a background of smaller beads. Journal of Statistical Mechanics: Theory
and Experiment, page P03027, 2011.
[47] Kiri Nichol and Karen Daniels. Equipartition of rotational and transla-
tional energy in a dense granular gas. Phys. Rev. Lett., 108:018001, Jan
2012.
[48] E.G.D. Cohen. Fifty years of kinetic theory. Physica A: Statistical Me-
chanics and its Applications, 194:229{257, March 1993.
[49] J M Kosterlitz and D J Thouless. Ordering, metastability and phase
transitions in two-dimensional systems. Journal of Physics C: Solid State
Physics, 6(7):1181, 1973.
[50] David Nelson and B. Halperin. Dislocation-mediated melting in two di-
mensions. Phys. Rev. B, 19:2457{2484, Mar 1979.
[51] A. Young. Melting and the vector coulomb gas in two dimensions. Phys.
Rev. B, 19:1855{1866, Feb 1979.
[52] Katherine Strandburg. Two-dimensional melting. Rev. Mod. Phys.,
60:161{207, Jan 1988.
[53] David R. Nelson. Defects and Geometry in Condensed Matter Physics.
Cambridge University Press, Cambridge, 1st edition, 2002.
[54] Francisco Ramos, Cristobal Lopez, Emilio Hernandez-Garca, and Miguel
Mu~noz. Crystallization and melting of bacteria colonies and brownian
bugs. Phys. Rev. E, 77:021102, Feb 2008.
60
[55] Yaakov Rosenfeld. Relation between the transport coefficients and the
internal entropy of simple systems. Phys. Rev. A, 15:2545{2549, Jun 1977.
[56] Andras Baranyai and Denis J. Evans. Direct entropy calculation from
computer simulation of liquids. Phys. Rev. A, 40:3817{3822, Oct 1989.
[57] Yaakov Rosenfeld. A quasi-universal scaling law for atomic transport in
simple
uids. J. Phys. Condens. Matter, 11(28):5415, 1999.
[58] Alok Samanta, Sk. M. Ali, and Swapan K. Ghosh. Universal scaling laws
of diffusion in a binary
uid mixture. Phys. Rev. Lett., 87:245901, Nov
2001.
[59] Alok Samanta, Sk. M. Ali, and Swapan K. Ghosh. New universal scaling
laws of diffusion and kolmogorov-sinai entropy in simple liquids. Phys.
Rev. Lett., 92:145901, Apr 2004.
[60] A. Meyer, S. Stuber, D. Holland-Moritz, O. Heinen, and T. Unruh. De-
termination of self-diffusion coefficients by quasielastic neutron scattering
measurements of levitated ni droplets. Phys. Rev. B, 77:092201, Mar 2008.
[61] A. Meyer. Self-diffusion in liquid copper as seen by quasielastic neutron
scattering. Phys. Rev. B, 81:012102, Jan 2010.
[62] J. Brillo, A. I. Pommrich, and A. Meyer. Relation between self-diffusion
and viscosity in dense liquids: New experimental results from electrostatic
levitation. Phys. Rev. Lett., 107:165902, Oct 2011.
[63] Xiaoguang Ma, Wei Chen, Ziren Wang, Yuan Peng, Yilong Han, and
Penger Tong. Test of the universal scaling law of diffusion in colloidal
monolayers. Phys. Rev. Lett., 110:078302, Feb 2013.
[64] Natsuki Hashitsume Ryogo Kubo, Morikazu Toda. Statistical Physics II:
Nonequilibrium Statistical Mechanics. Springer, Berlin, 1st edition, 1978.
61
[65] Jean-Pierre Hansen and Ian R. McDonald. Theory of Simple Liquids.
Academic Press, San Diego, 2nd edition, 1990.
[66] J. B. Barlow, W. H. Rae, Jr., and A. Pope. Low-speed wind tunnel testing.
John Wiley & Sons Inc., New York, 3 edition, 1993.
[67] Daan Frenkel and Berend Smit. Understanding Molecular Simulation:
From Algorithms to Applications. Academic Press, San Diego, 2nd edition,
2001.
[68] Chi Yang, Chong-Wai Io, and Lin I. Cooperative-motion-induced struc-
tural evolution in dusty-plasma liquids with microheterogeneity: Rup-
ture, rotation, healing, and growth of ordered domains. Phys. Rev. Lett.,
109:225003, Nov 2012.
[69] P. Reis, R. Ingale, and M. Shattuck. Caging dynamics in a granular
uid.
Phys. Rev. Lett., 98:188301, Apr 2007.
[70] Eric R Weeks and D.A Weitz. Subdiffusion and the cage effect studied
near the colloidal glass transition. Chem. Phys., 284:361 { 367, 2002.
[71] Wei Chen, Susheng Tan, Zhoushen Huang, Tai-Kai Ng, Warren T. Ford,
and Penger Tong. Measured long-ranged attractive interaction between
charged polystyrene latex spheres at a water-air interface. Phys. Rev. E,
74:021406, Aug 2006.
[72] Sven H. Behrens and David G. Grier. Pair interaction of charged colloidal
spheres near a charged wall. Phys. Rev. E, 64:050401, Oct 2001.
[73] David Chandler. Introduction to Modern Statistical Mechanics. Oxford
University Press, New York, 1st edition, 1987.
[74] The plot is reconstructed from the solid line in Fig. 1 from [59]. |