博碩士論文 972402001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.144.243.83
姓名 楊棨翔(Chi-Hsiang Yang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 超短極紫外線脈衝之單發式波形強度量測
(Single-Shot Intensity Waveform Measurement of Ultrashort Extreme-UV Pulses)
相關論文
★ 利用X光光電子能譜儀進行氬原子團簇游離能的研究★ 發展利用對撞光學拍頻脈衝波產生准相位匹配高階諧波
★ X光探測紅外線激發氬原子團簇產生奈米電漿球振盪現象之相關研究★ 在Pt(111)表面上研究雷射輔助光電效應
★ Preliminary Experiment for the Control of Cluster Vibration★ 釔鋇銅氧高溫超導薄膜的成長及診斷
★ 高階諧波產生極紫外光的脈衝時寬量測★ 建造準相位匹配高階諧波產生的拍波脈衝串
★ 相位匹配之極紫外光高階諧波產生★ 一百兆瓦雷射系統之建造與在結構化電漿波導之應用
★ 利用不同波長脈衝雷射產生高階諧波並最佳化相位匹配條件★ 經由高強度雷射引發尾場所產生的非熱效 應電子加速
★ 雷射電漿中無碰撞激震波的全域與局域量測★ 極紫外光與近紅外光在電漿中四波混頻的前期實驗
★ High-Harmonic Generation beyond the Traditional Phase-Matching Cutoff Energy★ 高階諧波相位匹配條件的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去的二十年裡,超快雷射技術進展非常地迅速。強烈的雷射脈衝聚焦所產生的最大強度可以超過10^20方瓦/平方厘米。在這樣的強場機制下,雷射脈衝能量比一個電子的原子的鍵合能量高得多。因此,一個新的非線性光學領域已經啟動,並且有許多應用,如發展軟X射線雷射、雷射尾場電子加速器、雷射熔接,以及高階諧波產生。
本論文記錄了我在高階諧波產生的研究成果與貢獻。第一章介紹高階諧波產生的背景,並指出高效率諧波產生的障礙。第二章介紹我們做相位匹配的高階諧波實驗。實驗結果表明,第25階的高階諧波(32.4奈米)能量為約1.2 奈焦耳/脈衝,對應的階波能量轉換效率約為10^-7。第25階的高階諧波發射的峰值亮度達到1.3×10^23 photons/sec/mm^2/mrad^2/0.1%BW。第三章介紹我們發展單發式的高階諧波強度波形測量。實驗結果表明,使用40飛秒和80飛秒諧波驅動脈衝,輸出高階諧波的脈衝時寬分別為44.3 飛秒和78.6飛秒。 高階諧波的波形強度穩定度分別為6 % 和 10 %. 第四章介紹我們利用一道反向傳播的拍波脈衝串來做準相位匹配的高階諧波理論和模擬,並且實際建造一套雙色光雷射系統來產生非等間距的拍波脈衝串,為了演示這套系統產生的拍波脈衝串,73飛秒相等間距拍波脈衝串與間距由45飛秒到140飛秒拍波脈衝串皆成功被產生。第五章為總結。
摘要(英) Ultrafast laser technology has progressed rapidly in the past two decades. The maximum intensity produced at the focus of an intense laser pulse can exceed 10^20 W/cm^. In such high intensity regime, the laser pulse energy is much higher than the bonding energy of an electron to an atom. Therefore, a new field of nonlinear optics has been launched, and many applications such as soft x-ray lasers, laser-wakefield electron accelerators, laser fusion, and high-order harmonic generation (HHG) are developed.

This thesis records my efforts and accomplishments in the research of high-order harmonic generation. Chapter 1 reviews the background of high-order harmonic generation and indicates the obstacles of efficient harmonic generation. Chapter 2 reports the experiment of our phase-matched HHG. The results show that the energy of the 25-th harmonic (32.4~nm) is about 1.2 nJ per pulse, corresponding to a harmonic conversion efficiency of 10^-7 order. The peak brightness of the 25-th harmonic emission reaches 1.3×10^23 photons/sec/mm^2/mrad^2/0.1%BW. Chapter 3 presents our single-shot measurement of the HHG intensity waveform. The results show that by using 40-fs and 80-fs harmonic-driving pulses, the output HHG durations are 44.3 fs and 78.6 fs, respectively. The shot-to-shot fluctuation is about 6 % and 10 %, respectively. Chapter 4 reports our theory and simulation of quasi-phase matching (QPM) of HHG with a counter-propagating optical beat wave and describes the synthesis of a beat-wave pulse train with increasing pulse separation for QPM HHG. For demonstration, pulse trains with equal separation of 73~fs and increasing separation from 45~fs to 140~fs are constructed.
關鍵字(中) ★ 高階諧波
★ 超短極紫外線脈衝
★ 單發式波形強度量測
關鍵字(英) ★ High-order harmonic generation
★ Ultrashort Extreme-UV Pulses
★ Single-Shot Intensity Waveform Measurement
論文目次 Abstract iii
List of Figures iv
1 Introduction of High-Order Harmonic Generation 1
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Atoms in the Strong Laser Field . . . . . . . . . . . . . 2
1.2.1 Optical-Field Ionization . . . . . . . . . . . . . 2
1.3 Theory of High-order Harmonic Generation . . . . . . . 9
1.3.1 The Semi-Classical Model of HHG . . . . . . . 10
1.4 Phase Matching Considerations in HHG . . . . . . . . 14
2 Phase-Matched High-Order Harmonic Generation 19
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Experimental parameters of Phase-Matched HHG . . . 20
2.3 Experimental Setup . . . . . . . . . . . . . . . . . . . . 21
2.4 Experimental Results . . . . . . . . . . . . . . . . . . . 24
3 Single-Shot Intensity Waveform Measurement of Ultrashort Extreme-UV Pulses by Spatially Encoded Transmission Gating 29
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . 32
3.3 Experimental Procedure . . . . . . . . . . . . . . . . . 36
3.4 Analysis of Experimental Data . . . . . . . . . . . . . . 42
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 48
4 Quasi-Phase Matching of High-order Harmonic Generation 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Selective-Zoning Method for Quasi-Phase Matching of
HHG . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Quasi-Phase Matching of HHG with a Counter-Propagating
Optical Beat Wave . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Theory of an Optical Beat Wave . . . . . . . . 53
4.3.2 QPM-HHG Simulation Method . . . . . . . . . 56
4.3.3 QPM-HHG Simulation Results . . . . . . . . . 60
4.4 Synthesis of a Beat-Wave Pulse Train with Increasing
Pulse Separation for QPM HHG . . . . . . . . . . . . . 64
4.4.1 Two-Color Ti:sapphire Amplifier System . . . . 65
4.4.2 Characterization of the Beat Wave Pulse Train . 74
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . 76
5 Conclusion and Perspective 79

Appendix
A Program for the Calculation of MO-ADK Tunneling Ionization Rate 81

B Program for the Calculation of HHG Phase Matching Condition 89

C Program for the Calculation of Energy Losses in the Propagation through the Capillary 95

D Program for Calculation of the HHG Output with a Counter-Propagating Beat Wave 103

E Design of Grating-Pair Compressor for the Two-Color Amplifier System 113

Bibliography 119
參考文獻 [1] P. B. Corkum, “Plasma perspective on strong field multiphoton
ionization,” Phys. Rev. Lett. 71, 1994{1997 (1993).
[2] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L′Huillier, and P. B.
Corkum, “Theory of high-harmonic generation by low-frequency
laser fields,” Phys. Rev. A 49, 2117{2132 (1994).
[3] E. Goulielmakis, M. Schultze, M. Hofstetter, V. S. Yakovlev,
J. Gagnon, M. Uiberacker, A. L. Aquila, E. M. Gullikson, D. T.
Attwood, R. Kienberger, F. Krausz, and U. Kleineberg, “Single-
Cycle Nonlinear Optics,” Science 320, 1614{1617 (2008).
[4] J. Seres, E. Seres, A. J.Verhoef, G. Tempea, C. Streli, P. Wo-
brauschek, V. Yakovlev, A. Scrinzi, C. Spielmann, and F. Krausz,
“Source of coherent kiloelectronvolt X-rays,” Nature 433, 596
(2005).
[5] T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin,
S. Brown, S. Aliauskas, G. Andriukaitis, T. Baliunas, O. D. Mcke,
A. Pugzlys, A. Baltuka, B. Shim, S. E. Schrauth, A. Gaeta,
C. Hernndez-Garca, L. Plaja, A. Becker, A. Jaron-Becker, M. M.
Murnane, and H. C. Kapteyn, “Bright Coherent Ultrahigh Har-
monics in the keV X-ray Regime from Mid-Infrared Femtosecond
Lasers,” Science 336, 1287{1291 (2012).
[6] D. Popmintchev, M.-C. Chen, C. H. Garca, J. A. P. Hernndez,
J. P. Siqueira, S. Brown, F. Dollar, B. C. Walker, P. Grychtol,
L. Plaja, M. M. Murnane, H. Kapteyn, and T. Popmintchev,
“Ultrahigh-Efficiency High Harmonic Generation Driven by UV
Lasers,” CLEO QELS.2013.QW1A.5.
[7] L. V. Keldysh, “Ionization in the _eld of a strong electromagnetic
wave,” Sov. Phys. JETP 20, 1307-1314 (1965).
[8] H. H Chu, “Construction of a 10-TW Laser of High Coherence
and Stability and Its Application in Laser-Cluster Interaction and
X-Ray Lasers,” Ph.D. dissertation, National Taiwan University,
(2005).
[9] P. B. Corkum, N. H. Burnett, and F. Brunel, “Above-threshold
ionization in the long wavelength limit,” Phys. Rev. Lett. 62,
1259-1262 (1989).
[10] N. H. Burnett and P. B. Corkum, “Cold-plasma production for
recombination extreme-ultraviolet lasers by optical-_eld-induced
ionization,” J. Opt. Soc. Am. B 6, 11951199 (1989).
[11] L. D. Landau and E. M. Lifshitz, “Quantum Mechanics,” (Perg-
amon, London, 1978).
[12] A. M. Perelomov, V. S. Popov, and M. V. Terentev, “Ionization
of atoms in an alternating electric field,” Sov. Phys. JETP 23,
924 (1965).
[13] M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ion-
ization of complex atoms and atomic ions in an alternating elec-
tromagnetic _eld,” Sov. Phys. JETP 64, 1191 (1986).
[14] X. M. Tong, Z. X. Zhao, and C. D. Lin, “Theory of molecular tun-
neling ionization,” PHYSICAL REVIEW A 66, 033402 (2002).
[15] D. Dill and J. L. Dehmer, “Electronmolecule scattering and
molecular photoionization using the multiple scattering method,”
The Journal of Chemical Physics 61, 692 (1974).
[16] X.L. Liang, X.C. Pan, and J.M. Li, “Ionization channels of su-
perexcited molecules,” Chin. Phys. Lett. 2, 545 (1985).
[17] X.C. Pan, X.L. Liang, and J.M. Li, Acta Phys. Sin. 36, 426
(1987).
[18] K. C. Kulander, K. J. Schafer, and J. L. Krause, “Dynamics
of short-pulse excitation, ionization and harmonic conversion,”
Super-Intense Laser-Atom Physics 316, 95{110 (1993).
[19] T. Pfeifer, C. Spielmann, and G. Gerber, “Femtosecond x-ray
science,” Rep. Prog. Phys. 69, 443 (2006).
[20] A. R. Rundquist, “Phase-matched generation of coherent, ultra-
fast x-rays using high harmonics,” Ph.D. dissertation, Washing-
ton State University, (1998).
[21] K. P. Birch and M. J. Downs, “Correction to the updated Edln
equation for the refractive index of air,” Metrologia 31, 315
(1994).
[22] Bengt Edln, “The refractive index of air,” Metrologia 2, 71 (1966).
[23] P. Zeitoun, G. Faivre, S. Sebban, T. Mocek, A. Hallou, M. Fa-
jardo, D. Aubert, P. Balcou, F. Burgy, D. Douillet, S. Kaza-
mias, G. de Lach`eze-Murel, T. Lefrou, S. le Pape, P. Merc`ere, H.
Merdji, A. S. Morlens, J. P. Rousseau, and C. Valentin, “A high-
intensity highly coherent soft X-ray femtosecond laser seeded by
a high harmonic beam,” Nature 431, 426{429 (2004).
[24] M.-C. Chou, P.-H. Lin, C.-A. Lin, J.-Y. Lin, J. Wang, and S.-
Y. Chen, “Dramatic Enhancement of Optical- Field-Ionization
Collisional-Excitation X-Ray Lasing by an Optically Preformed
Plasma Waveguide,” Phys. Rev. Lett. 99, 063904 (2007).
[25] C. Winterfeldt, C. Spielmann, and G. Gerber, “Colloquium: Op-
timal control of high-harmonic generation,” Rev. Mod. Phys. 80,
117{140 (2008).
[26] B. W. J. McNeil and N. R. Thompson, “X-ray free-electron
lasers,” Nature Photonics 4, 814{821 (2010).
[27] J. M. Schins, P. Breger, P. Agostini, R. C. Constantinescu, H. G.
Muller, G. Grillon, A. Antonetti, and A. Mysyrowicz, “Observa-
tion of Laser-Assisted Auger Decay in Argon,” Phys. Rev. Lett.
73, 2180{2183 (1994).
[28] T. E. Glover, R. W. Schoenlein, A. H. Chin, and C. V. Shank,
“Observation of Laser Assisted Photoelectric Effect and Fem-
tosecond High Order Harmonic Radiation,” Phys. Rev. Lett. 76,
2468{2471 (1996).
[29] S. Linden, J. Kuhl, and H. Giessen, “Amplitude and phase char-
acterization of weak blue ultrashort pulses by downconversion,”
Opt. Lett. 24, 569 (1999).
[30] J. M. Schins, P. Breger, P. Agostini, R. C. Constantinescu, H.
G. Muller, A. Bouhal, G. Grillon, A. Antonetti, and A. Mysy-
rowicz, “Cross-correlation measurements of femtosecond extreme-
ultraviolet high-order harmonics,” J. Opt. Soc. Am. B 13, 197{
200 (1996).
[31] A. Bouhal, P. Sali`eres, P. Breger, P. Agostini, G. Hamoniaux, A.
Mysyrowicz, A. Antonetti, R. Constantinescu, and H. G. Muller,
“Temporal dependence of high-order harmonics in the presence
of strong ionization,” Phys. Rev. A 58, 389{399 (1998).
[32] J. Norin, J. Mauritsson, A. Johansson, M. K. Raarup, S. Buil, A.
Persson, O. Duhr, M. B. Gaarde, K. J. Schafer, U. Keller, C.-G.
Wahlstrom, and A. LHuillier, “Time-Frequency Characterization
of Femtosecond Extreme Ultraviolet Pulses,” Phys. Rev. Lett. 88,
193901 (2002).
[33] L. C. Dinu, H. G. Muller, S. Kazamias, G. Mullot, F. Auge, P. Bal-
cou, P. M. Paul, M. Kovacev, P. Breger, and P. Agostini, “Mea-
surement of the Subcycle Timing of Attosecond XUV Bursts in
High-Harmonic Generation,” Phys. Rev. Lett. 91, 063901 (2003).
[34] E. S. Toma, H. G. Muller, P. M. Paul, P. Breger, M. Cheret, P.
Agostini, C. Le Blanc, G. Mullot, and G. Cheriaux, “Ponderomo-
tive streaking of the ionization potential as a method for measur-
ing pulse durations in the XUV domain with fs resolution,” Phys.
Rev. A 62, 061801 (2000)
[35] Y. Mairesse and F. Quere, “Frequency-resolved optical gating for
complete reconstruction of attosecond bursts,” Phys. Rev. A 71,
011-401 (2005).
[36] G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R.
Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Sta-
gira, S. De Silvestri, and M. Nisoli, “Isolated Single-Cycle At-
tosecond Pulses,” Science 314, 443-446 (2006).
[37] I. Thomann, E. Gregonis, X. Liu, R. Trebino, A. S. Sandhu, M.
M. Murnane, and H. C. Kapteyn, “Temporal characterization of
attosecond wave forms in the suboptical- cycle regime,” Phys.
Rev. A 78, 011-806 (2008).
[38] P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Aug, P. Balcou,
H. G. Muller, and P. Agostini, “Observation of a Train of At-
tosecond Pulses from High Harmonic Generation,” Science 292,
1689-1692 (2001).
[39] H. G. Muller, “Reconstruction of attosecond harmonic beating by
interference of two-photon transitions,” Appl. Phys. B 74, s17-s21
(2002).
[40] M. H. Sher, T. J. McIlrath, U. Mohideen, H.W. K. Tom, O. R.
Wood, G. D. Aumiller, and R. R. Freeman, “Picosecond soft-
x-ray pulse-length measurement by pumpprobe absorption spec-
troscopy,” Opt. Lett. 18, 646-648 (1993).
[41] Y. Kobayashi, O. Yoshihara, Y. Nabekawa, K. Kondo, and S.
Watanabe, “Femtosecond measurement of highorder harmonic
pulse width and electron recombination time by _eld ionization,”
Opt. Lett. 21, 417-419 (1996).
[42] K. Oguri, T. Nishikawa, T. Ozaki, and H. Nakano, “Sampling
measurement of soft-x-ray-pulse shapes byfemtosecond sequential
ionization of kr+ in an intense laser _eld” Opt. Lett. 29, 1279-1281
(2004).
[43] I. Grguras, A. R. Maier, C. Behrens, T. Mazza, T. J. Kelly,
P. Radcliffe, S. Dsterer, A. K. Kazansky, N. M. Kabachnik, T.
Tschentscher, J. T. Costello, M. Meyer, M. C. Hoffmann, H.
Schlarb, and A. L. Cavalieri, “Ultrafast X-ray pulse characteriza-
tion at free-electron lasers,” Nature Photonics 6, 852857 (2012).
[44] M. Beye, O. Krupin, G. Hays, A. H. Reid, D. Rupp, S. d. Jong,
S. Lee, W.-S. Lee, Y.-D. Chuang, R. Coffee, J. P. Cryan, J. M.
Glownia, A. Fhlisch, M. R. Holmes, A. R. Fry, W. E. White, C.
Bostedt, A. O. Scherz, H. A. Durr, and W. F. Schlotter, “X-ray
pulse preserving single-shot optical cross-correlation method for
improved experimental temporal resolution,” Appl. Phys. Lett.
100, 121108 (2012).
[45] R. Riedel, A. Al-Shemmary, M. Gensch, T. Golz, M. Harmand,
N. Medvedev, M. J. Prandolini, K. Sokolowski-Tinten, S. Toleikis,
U. Wegner, B. Ziaja, N. Stojanovic, and F. Tavella, “Single-shot
pulse duration monitor for extreme ultraviolet and X-ray freeelec-
tron lasers,” Nature Communications 4, 1731 (2013).
[46] T.-S. Hung, C.-H. Yang, J. Wang, S. yuan Chen, J.-Y. Lin, and
H. hsin Chu, “A 110-TW multiple-beam laser system with a 5-
TW wavelength-tunable auxiliary beam for versatile control of
laser-plasma interaction,” Appl. Phys. B 117, 1189-1200 (2014).
[47] W. H. Richarson, “Bayesian-Based Iterative Method of Image
Restoration,” J. Opt. Soc. Am. 62, 55-59 (1972).
[48] L. B. Lucy, “An iterative technique for the recti_cation of ob-
served distributions,” Astronomical Journal 79, 745 (1974).
[49] I. Christov, H. Kapteyn, and M. Murnane, “Quasi-phase match-
ing of high-harmonics and attosecond pulses in modulated waveg-
uides,” Opt. Express 7, 362{367 (2000).
[50] E. A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi,
S. Backus, I. P. Christov, A. Aquila, E. M. Gullikson, D. T.
Attwood, M. M. Murnane, and H. C. Kapteyn, “Coherent softx-ray generation in the water window with quasi-phase match-
ing,” Science 302, 95{98 (2003).
[51] A. Paul, R. A. Bartels, R. Tobey, H. Green, S. Weiman, I. P.
Christov, M. M. Murnane, H. C. Kapteyn, and S. Backus, “Quasi-
phase-matched generation of coherent extreme-ultraviolet light,”
Nature 421, 51{54 (2003).
[52] X. Zhang, A. Lytle, T. Popmintchev, A. Paul, N. Wagner,
M. Murnane, and H. Kapteyn, “Phase matching, quasi-phase
matching, and pulse compression in a single waveguide for en-
hanced high-harmonic generation,” Opt. Lett. 30, 1971{1973
(2005).
[53] J. Seres, V. S. Yakovlev, E. Seres, C. Streli, P. Wobrauschek,
C. Spielmann, and F. Krausz, “Coherent superposition of laser-
driven soft-X-ray harmonics from successive sources,” Nature
Physics 3, 878{883 (2007).
[54] A. Pirri, C. Corsi, and M. Bellini, “Enhancing the yield of high-
order harmonics with an array of gas jets,” Phys. Rev. A 78,
011 801 (2008).
[55] M. Zepf, B. Dromey, M. Landreman, P. Foster, and S. M. Hooker,
“Bright Quasi-Phase-Matched Soft-X-Ray Harmonic Radiation
from Argon Ions,” Phys. Rev. Lett. 99, 143 901 (2007).
[56] B. Dromey, M. Zepf, M. Landreman, and S. M. Hooker, “Quasi-
phasematching of harmonic generation via multimode beating in
waveguides,” Opt. Express 15, 7894{7900 (2007).
[57] A. Willner, F. Tavella, M. Yeung, T. Dzelzainis, C. Kamperidis,
M. Bakarezos, D. Adams, R. Riedel, M. Schulz, M. C. Hoffmann,
W. Hu, J. Rossbach, M. Drescher, V. S. Yakovlev, N. A. Papado-
giannis, M. Tatarakis, B. Dromey, and M. Zepf, “Efficient control
of quantum paths via dual-gas high harmonic generation,” New
Journal of Physics 13, 113 001 (2011).
[58] J. Peatross, S. Voronov, and I. Prokopovich, “Selective zoning
of high harmonic emission using counter-propagating light,” Opt.
Express 1, 114{125 (1997).
[59] S. L. Voronov, I. Kohl, J. B. Madsen, J. Simmons, N. Terry,
J. Titensor, Q. Wang, and J. Peatross, “Control of Laser High-
Harmonic Generation with Counterpropagating Light,” Phys.
Rev. Lett. 87, 133 902 (2001).
[60] X. Zhang, A. L. Lytle, T. Popmintchev, X. Zhou, H. C. Kapteyn,
M. M. Murnane, and O. Cohen, “Quasi-phase-matching and
quantum-path control of high-harmonic generation using coun-
terpropagating light,” Nature Physics 3, 270{275 (2007).
[61] A. L. Lytle, X. Zhang, J. Peatross, M. M. Murnane, H. C.
Kapteyn, and O. Cohen, “Probe of High-Order Harmonic Gener-
ation in a HollowWaveguide Geometry using Counterpropagating
Light,” Phys. Rev. Lett. 98, 123 904 (2007).
[62] O. Cohen, A. L. Lytle, X. Zhang, M. M. Murnane, and H. C.
Kapteyn, “Optimizing quasi-phase matching of high harmonic
generation using counterpropagating pulse trains,” Opt. Lett. 32,
2975{2977 (2007).
[63] A. L. Lytle, X. Zhang, P. Arpin, O. Cohen, M. M. Murnane,
and H. C. Kapteyn, “Quasi-phase matching of high-order har-
monic generation at high photon energies using counterpropagat-
ing pulses,” Opt. Lett. 33, 174{176 (2008).
[64] A. L. Lytle, X. Zhang, R. L. Sandberg, O. Cohen, H. C. Kapteyn,
and M. M. Murnane, “Quasi-phase matching and characteriza-
tion of high-order harmonic generation in hollow waveguides using
counterpropagating light,” Opt. Express 16, 6544{6566 (2008).
[65] T. Robinson, K. O′Keeffe, M. Zepf, B. Dromey, and S. M. Hooker,
“Generation and control of ultrafast pulse trains for quasi-phase-
matching high-harmonic generation,” J. Opt. Soc. Am. B 27, 763{
772 (2010).
[66] K. O′Keeffe, T. Robinson, and S. M. Hooker, “Quasi-phase-
matching high harmonic generation using trains of pulses pro-
duced using an array of birefringent plates,” Opt. Express 20,
6236{6247 (2012).
[67] K. O′Keeffe, D. T. Lloyd, and S. M. Hooker, “Quasi-phase-
matched high-order harmonic generation using tunable pulse
trains,” Opt. Express 22, 7722{7732 (2014).
[68] M. V. Ammosov, N. B. Delone, and V. P. Krainov, “Tunnel ion-
ization of complex atoms and atomic ions in an alternating elec-
tromagnetic _eld,” Sov. Phys. JETP 64, 1191 (1986).
[69] E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and
Dielectric Waveguides for Long Distance Optical Transmission
and Lasers,” Bell Syst. Tech. J. 43, 1783 (1964).
[70] F. Dorchies, J. R. Marqu_es, B. Cros, G. Matthieussent, C. Cour-
tois, T. V_elikoroussov, P. Audebert, J. P. Geindre, S. Rebibo,
G. Hamoniaux, and F. Amiranoff, “Monomode Guiding of 1016
W/cm2 Laser Pulses over 100 Rayleigh Lengths in Hollow Capil-
lary Dielectric Tubes,” Phys. Rev. Lett. 82, 4655{4658 (1999).
[71] T. Yau, C. Lee, and J. Wang, “Femtosecond self-focusing dynam-
ics measured by three-dimensional phase-retrieval cross correla-
tion,” JOSA B 17, 1626{1635 (2000).
[72] Sterling Backus, Charles G. Durfee III, Margaret M. Murnane
and Henry C. Kapteyn, “High power ultrafast lasers,” Rev. Sci.
Instrum. 69, 1207{1223 (1998).
指導教授 朱旭新 審核日期 2015-1-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明