![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:16 、訪客IP:18.191.44.139
姓名 丹明輝(Rizal Dian Azmi) 查詢紙本館藏 畢業系所 數學系 論文名稱
(A Nonlinear Multiscale Finite Element Method for Poisson-Boltzmann Equation)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
[檢視]
[下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在兩個均勻帶電的平行板中,對稱的電解質通常使用泊松-波茲曼方程來做模擬,進而使用非線性泊松-波茲曼方程做修正。而針對此問題,我們以不精確地回溯牛頓迭代法來求解。在離散方法上若採用標準的蓋勒肯法,則需要細密的網格才可達到較為精確的解。因此為了避免網格的需求,我們在較少的網格上採用多重尺度有限元素法來求出更精確的解。在本文中導入多重尺度基底及泡泡函數,並使用此兩者來對全域的多重尺度有限元素方程求解,同時我們也展現了多重尺度在每個牛頓法迭代次數的改變。
摘要(英) The Poisson–Boltzmann equation (PBE) is used to model the symmetric electrolyte in two parallel uniformly charged plates. A Correction problem formed to approach the
nonlinear Poisson-Boltzmann equation. The inexact Newton with backtracking method iteration used to solve that correction problem. In the discretization, the standard Galerkin method requires the small grid to achieves accurate result. To avoid this, a multiscale finite element is used to get the better accurate result with a few grid partition. A residual free method is used to derive the multiscale basis and bubble function. This multiscale basis and bubble function used to solved the global solution of multiscale finite element method. It is shown that multiscale basis is changed in each Newton iteration.關鍵字(中) ★ 多尺度
★ 有限元素法
★ Poisson-Boltzmann關鍵字(英) ★ Multiscale
★ Finite Element Method
★ Poisson-Boltzmann論文目次 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Poisson-Boltzmann Equation in Symmetric Electrolyte Problem . . . . . . 3
3 Numerical Method for 1D Poisson Boltzmann Equation . . . . . . . . . . . 5
3.1 Poisson-Boltzmann equation and it’s linearization . . . . . . . . . . . . . 5
3.2 Variational formulation for the corection equation . . . . . . . . . . . . . 6
3.3 Galerkin finite element formulation . . . . . . . . . . . . . . . . . . . . . 7
3.4 Multiscale Finite Element Method (MsFEM) . . . . . . . . . . . . . . . 11
3.5 An Review of The Inexact Newton Method with Backtracking (INB) . . . 13
3.6 Iterated INB with Galerkin FEM and MsFEM for Poisson-Boltzmann
Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 Exact Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Grid Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Appendix: Stiffness matrix and load vector of finite element methods) . . . . . . . 30參考文獻 [1] D. Andelman. Electrostatic Properties of Membranes: The Poisson–Boltzmann Theory.
chapter 12. Elsevier, 1995.
[2] Eric B. Becker, Graham F. Carey, and J. Tinsley Oden. Finite Element: An Introduction,
volume 1. Prentice Hall, 1981.
[3] Thomas Y. Hou and Xiao-Hui Wu. A multiscale finite element method for elliptic
problems in composite materials and porous media. Journal of Computational
Physic, 134:169–189, 1997.
[4] Thomas Y. Hou, Xiao-HuiWu, and Zhiqiang Cai. Convergence of a multiscale finite
element method for elliptic problem with rapidly oscillating coefficients. Mathematics
of Computation, 68:913–943, 1999.
[5] B. Z. Lu, Y. C. Zhou, M. J.Holst, and J.A.McCammon. Recent progress innumericalmethods
for the poisson- boltzmann equation in biophysical applications. Commun.
Comput. Phys, 3, 2008.
[6] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, 1999.
[7] M. Parvazinia, V. Nassehi, and R.J.Wakeman. Multi-scale finite element modelling
of laminar steady flowthrough highly permeable porous media. Chemical Engineering
Science, 61:586–596, 2006.
[8] R. Tuinier. Approximate solutions to the poisson–boltzmann equation in spherical
and cylindrical geometry. Colloid and Interface Science, 258:45–49, 2003.
[9] E. J. W. Verwey and J. TH. G. Overbeek. Theory of The Stability of Lyphobic Colloids.
Elsevier, 1948.
[10] Xiangjun Xing. The poisson-boltzmann theory for the two-plates problem: Some
exact results. Classical Physic, arXiv:1410.4268v1, 2010.指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2014-11-13 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare