博碩士論文 100323020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:79 、訪客IP:3.137.173.98
姓名 劉育豪(Yu-hao Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 球面漸開線直傘齒輪修整設計、分析與疲勞測試
相關論文
★ LED封裝點膠系統創新設計之研究★ 夾治具概念設計方法之研究
★ 葡萄糖檢測電極基材之化銅電鍍鎳金製程開發研究★ 印刷電路板蝕刻製程設計與可視化驗證實驗
★ 平行軸錐形齒輪齒根應力特性之研究★ 漸開線直齒錐形齒輪齒根應力之量測與分析
★ 單軸押出機減速機系列產品之計算機輔助開發模式之研究★ 漸開線直齒錐形齒輪齒根應力計算模型之初步研究
★ 非旋轉式表面電漿儀之創新設計與製作★ 電腦輔助單軸押出機減速機系列產品之開發
★ 單軸押出機減速機箱體系列化發展模式之研究★ 電腦輔助機械零件製造成本預估 – 以單軸押出機減速機為例
★ 直齒錐形齒輪齒根應力解析計算模式之研究★ 具點接觸型態之歪斜軸錐形齒輪對齒面疲勞破壞之初步研究
★ 粉末冶金齒輪齒根疲勞強度之研究★ 電腦輔助設計程式模組之建構-以齒輪減速機為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 傘齒輪的應用非常廣泛,適用於各種軸交角之傳動上。傳統的製造方式大多使用齒輪專用機進行切削加工,然而不同輪專用機系統所製作的齒形亦有差異,使得所製造之齒輪除不能互通共用外,且設計加工參數多,若要對齒面做修整,相關設計參數之設定會變得相當複雜。因此本論文之研究目的,即提出以球面漸開線做為直齒傘齒輪之齒形,並以雙曲線建構之齒線隆起之齒面修整模式。為確認修整模式之可行性,論文中分別分析修整型傘齒輪對在未受載及受載狀況下之齒面接觸狀況,同時亦製造出測試齒輪,進行齒印量測及疲勞破壞測試。
本論文使用之齒面接觸分析方法,係利用球面漸開線之法向量幾何特性定義傘齒輪對在空間中任一組裝下的接觸條件條件,以簡化嚙合齒面接觸點位置之求解,再以此方法分析修整參數對接觸點位置及傳動誤差於不同組裝誤差下之影響。接觸點位置分析結果顯示,偏位誤差敏感度最大,其次分別為大、小齒輪之軸向誤差,而角度誤差並不會影響接觸點在齒面寬方向之位置,僅在齒形方向做改變。傳動誤差分析結果顯示,傳動誤差曲線在偏位誤差下近似於拋物線,而在大、小齒輪軸向誤差下則為非連續之近似直線,而在角度誤差下並無傳動誤差產生。
嚙合齒對之受負載齒面接觸分析,係使用影響係數法求解修整型傘齒輪對之受載齒面接觸應力、負載分配與受載傳動誤差。接觸應力分析結果可知:(1) 嚙合齒對在接觸開始時接觸應力會偏高,(2) 嚙合齒對在接觸開始與接觸結束位置,因受齒頂邊緣之影響,會發生齒面會有接觸應力集中現象。受載傳動誤差分析結果顯示:(1) 在不同負載下之傳動誤差曲線,會隨著輸入扭力增加而使整體誤差曲線偏移量加大;(2) 在有、無各組裝誤差下之傳動誤差曲線,在單、雙齒對接觸交界處會產生一明顯的段差,同時會隨輸入扭力增加而加大。
組裝誤差下嚙合位置則以齒印量測以及CAD干涉模擬兩種方式進行驗證,驗證結果顯示本研究提出之TCA模型計算結果與上述兩種驗證方式結果相符。
齒輪疲勞測試部分係於功率封閉型的測試平台上進行,對未修整齒輪及修整型齒輪,在不同負載下進行5*10^5週期之疲勞破壞測試,並比較其齒面破壞面積比率。由實驗結果可得知,在相同的負載條件及有限壽命下,修整型傘齒輪齒面破壞程度較未修整型齒輪小。在各疲勞測試中,同時會量測齒輪運轉時的振動,頻譜分析結果可知未修整齒輪邊緣接觸與齒輪不對心狀況對振動的影響,在齒面破壞後會變得嚴重;修整型齒輪齒面的磨損對於振動的影響較為明顯,若將軸變形補償納入測試,修整型齒輪整體的振幅值明顯較其他兩種條件低。
摘要(英) Bevel gears are wildly applied to angular transmission. Traditionally, bevel gears are manufactured by different dedicated gear machines according to the corresponding gearing system. Consequently, the bevel gears manufactured by different gearing system are not interchangeable due to different gearing parameters. Therefore, the design of flank modification on machined bevel gears will be more complicated. Therefore, the purpose of this research is to propose a lead crowning method with hyperbolic curve for spherical involute bevel gears. This design approach is intuitive and suitable for moulded gears. Loaded and unloaded tooth contact of bevel gear pairs under assemblely errors are analyzed to verify the feasibility of the proposed approach. Finally, test bevel gears are also manufactured for the measurement of tooth contact patterns and the fatigue tests.
The tooth contact analysis (TCA) proposed in the thesis is based on the contact conditions which are determined by the spherical involute geometric characteristics, so as to simplify the solving procedure. With aid of this approach, the influence of the flank modification parameters on the contact positions and transmission errors were analyzed for the gear pairs under different assembly errors. The results show that the contact position of the tooth pair due to the offset error is the most sensitive, the next is due to the mounting distance errors of the gear and the pinion. The shaft angle error does not affect the contact position in the direction of the face-width, but only the direction of the tooth profile. The curve of unloaded transmission error (TE) due to the offset error is similar to parabolic curve, the others due to the mounting distance errors are discontinuous linear curve. The shaft angle error affects no transmission error.
The loaded tooth contact analysis (LTCA) approach is based on the influence coefficient method to determine tooth contact stress, load sharing and loaded transmission errors. The results show that contact stress at the contact begin is the highest, and the concentrated contact stress occurs at the contact begin and the contact end. The loaded transmission error (LTE) will be shifted to a certain lag angle when the input torque is increased. At the inner and outer point of single contact tooth pair, a significant jump of the discontinuous LTE curve is also increased with a larger input torque, independ on presence of assembly errors.
The contact positions under various assembly errors simulated by the proposed TCA model are validated by measurement of contact pattern of test gears and interference analysis in CAD porgram. The results show that the TCA model is in good agreement with the contact pattern measurement and CAD simulation.
The gear fatigue test was conducted on a power close-loop test rig. Two kinds of test gears, each with non-modifided and modifided flanks, were tested under different loads for 5*10^5 cycles. The ratios of the tooth surface damage area of different cases are compared. The experimental results show that pitting damage on modified flanks is less than non-modifided under the same conditions.
Additionally, the vibration of the test gears was also measured during the test. It is found from the analysis results of the frequency spectrum that the vibration of the non-modifided gears due to the edge contact and the eccentric error was more serious after occurrence of the pitting on the flanks. The tooth wear has significant effect on thr vibration of the modified gears. Further more, the total amplitude values of vibration on the modifided gears are significantly lower than other cases, if the compensation of the shaft deformation is considered
關鍵字(中) ★ 球面漸開線傘齒輪
★ 齒線修整
★ 組裝誤差分析
★ 受載齒面接觸分析
★ 受載傳動誤差分析
★ 傘齒輪疲勞試驗
關鍵字(英) ★ Spherical involute bevel gear
★ Lead modification
★ Assembly error analysis
★ Loaded tooth contact analysis
★ Loaded tranmossion error
★ Bevel gear fatigue test
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vi
圖目錄 x
表目錄 xix
符號說明 xx
第1章 前言 1
1.1 研究背景 1
1.2 文獻回顧 3
1.3 研究目的 7
1.4 論文架構 8
第2章 理論基礎 9
2.1 傘齒輪幾何設計 9
2.1.1 傘齒輪對設計 9
2.1.2 齒輪幾何參數 10
2.1.3 外形設計 13
2.2 傘齒輪齒面數學式 15
2.2.1 球面漸開線 16
2.2.2 球面漸開線齒面方程式 17
2.2.3 球面漸開線齒面法線 24
2.3 傘齒輪對嚙合關係 25
2.3.1 嚙合位置計算 25
2.3.2 接觸率 28
2.4 齒線修整 28
2.4.1 雙曲線修整之修整型齒面方程式 28
2.4.2 雙曲線修整參數特性 31
2.5 齒輪對受負載接觸模型 35
2.5.1 單齒對接觸模型 35
2.5.2 多齒對接觸模型 39
第3章 修整型傘齒輪齒面接觸分析 40
3.1 齒輪對嚙合齒面接觸分析模型 40
3.1.1 齒輪對空間配置關係 40
3.1.2 球面漸開線齒面法線特性 46
3.1.3 接觸條件式 48
3.2 組裝誤差下嚙合接觸分析 51
3.3 設計參數選定 57
第4章 傘齒輪對受載齒面接觸分析 59
4.1 齒面間距 59
4.1.1 座標轉換 59
4.1.2 間距計算 62
4.1.3 齒面有效區嚙合域定義 63
4.2 理想組裝之嚙合齒面受載分析 66
4.2.1 嚙合過程之負載分配 67
4.2.2 嚙合過程之應力變化 68
4.2.3 特定位置之應力 72
4.3 各組裝誤差之嚙合過程齒面受載分析 74
4.3.1 嚙合過程之負載分配 74
4.3.2 嚙合過程之應力變化 76
4.3.3 特定位置之應力 82
4.4 傳動誤差分析 90
4.4.1 傳動誤差定義 91
4.4.2 無負載下之傳動誤差 93
4.4.3 受負載之傳動誤差 99
第5章 組裝誤差下嚙合位置驗證 103
5.1 TCA模型計算 103
5.2 CAD模擬方法 106
5.3 齒印量測 108
5.3.1 齒輪樣本 108
5.3.2 測試方法 110
5.4 分析模擬與量測結果比較 113
5.4.1 小結 118
第6章 齒輪疲勞測試 119
6.1 實驗規劃 119
6.1.1 實驗設備設計 119
6.1.2 治具設計 120
6.1.3 負載規劃 124
6.1.4 測試齒輪樣本 126
6.1.5 振動量測規劃 127
6.1.6 實驗流程 129
6.2 疲勞破壞測試 130
6.2.1 齒印校正 130
6.2.2 疲勞測試結果與討論 135
6.3 輪軸變形補償之疲勞破壞測試 146
6.3.1 補償方法 146
6.3.2 測試結果與討論 150
6.4 齒輪嚙合振動量測 158
6.4.1 典型振動頻譜介紹 158
6.4.2 振動量測結果與討論 160
第7章 結論與未來展望 168
7.1 結論 168
7.2 未來展望 171
參考文獻 172
附錄 傘齒輪球面三角幾何 178
參考文獻 [1] Uicker, J. J. Jr., Pennock, G. R., and Shigley, J. E., Theory of Machines and Mechanisms, Oxford University Press, New York, 2003.
[2] 石伊蓓,「直傘齒輪製造方法介紹」,機械月刊,第三十六卷,第六期,pp. 84-101,2010。
[3] Radzevich S. P., Dudley′s Handbook of Practical Gear Design and Manufacture, 2nd edition, CRC Press, 2012.
[4] Ligata, H., Zhang, H.H., “Overview and Design of Near Net-Formed Spherical Involute Straight Bevel Gears,” Proceedings of The 2011 IAJC-ASEE International Conference, ENG 107, Paper 161, 2011.
[5] ASNI/AGMA ISO 23509-A08, Bevel and Hypoid Gear Geometry, 2006.
[6] ANSI/AGMA 2005-D03, Deaign Manual for Bevel Gears, 2008.
[7] ANSI/AGMA ISO 17485-A08, Bevel Gears – ISO System of Accuracy, 2008.
[8] ANSI/AGMA 2009-B01, Bevel Gears Classification, Tolerance, and Measuring Methods, 2001.
[9] ANSI/AGMA 6008-A98, Specifications for Power Metallurgy Gears.
[10] Tsai, Y.-C., and Chin, P.-C., “Surface Geometry of Straight and Spiral Bevel Gears,” Transactions of the ASME, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 109(4), pp. 443-449, 1987.
[11] Schaaf, J.A., Yang, A. T., “Kinematic Geometry of Spherical Evolutes,” Journal of Mechanical Design, Transactions of the ASME, Vol. 114, No. 1, pp. 109-116, Mar 1992.
[12] Lee, H.W., Lee, K.O., and Chung, D.H., “A Kinematic Investigation of A Spherical Involute Bevel-Geared System,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 224, pp. 1335-1348, 2010.
[13] Al-Daccak, M. J., Angels, J. and Gonzles-Palacios, M. A., “The Modeling of Bevel Gears Using the Exact Spherical Involute,” Journal of Mechanical Design, Transactions of the ASME, Vol. 116, pp. 364-368, 1994.
[14] Figliolini, G., and Angeles, J., “Algorithms for Involute and Octoidal Bevel-Gear Generation,” Journal of Mechanical Design, Transactions of the ASME, Vol. 127, pp. 664-672, 2005.
[15] Litvin, F.L., and Fuentes, A., Gear Geometry and Applied Theory, 2nd edition, Cambridge University Press, NJ, 2004.
[16] ANSI/AGMA 95FTM12, Stadtfeld H., “Flank Modifications in Bevel Gears Using a Universal Motion Concept,” 1995.
[17] 蔡明芳,「模造齒輪齒形設計與修整之研究」,國立中正大學博士論文,2007。
[18] 鍾禮隆,「凹面錐形齒輪修整設計模式之研究」,國立中央大學碩士論文,2009。
[19] Ligata, H., Zhang, H.H., “Geometry Definition and Contact Analysis of Spherical Involute Straight Bevel Gear”, International Journal of Industrial Engineering & Production Research, Vol. 23, No. 2, pp. 101-111, 2012.
[20] Terauchi, Y., Nagamura, K. et al, “Study on Tooth Bearing of Bevel Gears. 1st Report, Theoretical Calculation of Tooth Bearing and Experiment,” Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 51, No. 468, pp. 2024-2033, 1985.
[21] Terauchi, Y., Nagamura, K. et al, “Study on Tooth Bearing of Bevel Gears. 2nd Report, Relation between Tooth Bearing and Assembly Error, Shaft Angle Error,” Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 51, No. 468, pp. 2034-2041, 1985.
[22] ANSI/AGMA 2008-C01, Assembling Bevel Gear, 2001.
[23] 吳思漢,「似線接觸型態之歪斜軸漸開線錐形齒輪對齒面接觸強度之研究」,國立中央大學博士論文,2009。
[24] Johnson, K. L., Contact Mechanics, Press Syndicate of the University of Cambridge, 1985.
[25] Sentoku, H., Yamaguchiya, N., “Load Distribution and Tooth Root Stress of Bevel Gear,” Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 60, No. 580, pp. 4325-4329, 1994.
[26] Sentoku, H., Doi, M., “Load Distribution and Tooth Root Stress of Coniflex Gear,” Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 61, No. 586, pp. 2567-2572, 1995.
[27] Sentoku, H., Yamaguchi, M., “Effect of Assembly Error on Load Distribution and Tooth Root Stress of Bevel Gears,” JSME International Journal, Series C, Vol. 62, No. 597, pp. 335-341, 1996.
[28] Sentoku, H., Yamaguchi, M., “Effect of Assembly Error and Shaft Angle Error on Load Distribution and Tooth Root Stress of Bevel Gears,” JSME International Journal, Series C, Vol. 62, No. 597, pp. 342-349, 1996.
[29] Simon, V., “Load Distribution in Hypoid Gears,” Journal of Mechanical Design, Vol. 122, Issue 4, pp. 529-536, 2000.
[30] Simon, V., “Load Distribution in Spiral Bevel Gears,” Journal of Mechanical Design, Vol. 129, Issue 2, pp. 201-210, 2007.
[31] Sentoku, H., Itou, T., “Study on Transmission Error of Straight Bevel Gears,” Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 68, No. 670, pp. 1848-1854, 2002.
[32] Sentoku, H., Murata, S., “Study on Transmission Error of Straight Bevel Gear (Influence of Tooth Profiles),” Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 71, No. 701, pp. 258-264, 2005.
[33] 丁康等人,齒輪及齒輪箱故障診斷實用技術,機械工業出版社,北京,2005。
[34] Girdhar, P., Practical Machinery Vibration Analysis and Predictive Maintenance, IDC Technologies, 2004.
[35] Smith, J., D., Gear Noise and Vibration, Marcel Dekker, Inc, New York, 2003.
[36] Zargar, O., A., “Vibration, Lubrication and Machinery Consideration for a Mixer Gearbox Related to Iran Oil Industries,” International Journal of Mechanical, Aerospace, Industrial and Mechatronics Engineering, Vol. 8, No. 3, pp. 557-563, 2014.
[37] Mosher, M., Pryor, A. H., and Lewicki, D. G., “Detailed Vibration Analysis of Pinion Gear with Time-Frequency Methods,” NASA /TM-2003-212269, 2003.
[38] Dempsey, P. J., Handschuh, R. F., and Afjeh, A. A., “Spiral bevel gear damage detection using decision fusion analysis,”, Proceedings of the Fifth International Conference on Information Fusion, Vol. 1, pp. 94-100, 2002.
[39] ANSI/AGMA 2003-B97, Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel, Zerol Bevel and Spiral Bevel Gear Teeth.
[40] ISO 10300-3, Calculation of Load Capacity Of Bevel Gears, Part 3:Calculation of Tooth Root Strength, 2001.
[41] DIN 3967, Backlash, Tooth Thickness Allowances and Tooth Thickness Tolerances;Bases, Caculation of Tooth Thivkness Allowances, Conversion of Allowances for the Different Measuring Methods, 1987.
[42] Veldkamp, G. R., “On the Use of Dual Numbers, Vectors, and Matrices in Instantaneous Spatial Kinematics,” Mechanism and Machine Theory, Vol. 11, pp. 141-156, 1976.
[43] Xiao, D. Z., and Yang, A. T., “Kinematics of Three Dimensional Gearing,” Mechanism and Machine Theory, Vol. 24(4), pp. 245-255, 1989.
[44] Fischer, I.S., Dual-Number Method in Kinematic, Statics and Dymatics, CRC Press, 1999.
[45] 黃坤祥,粉末冶金學,中華民國粉末冶金學會,新竹,2003。
[46] Hoehn, B.-R., Oster, P., Tobie, T. and Michaelis, K., “Test Methods for Gear Lubeicants,” Fuels and Lubricants (Goriva I Maziva), Vol. 47(2), pp. 141-152, 2008.
[47] Oda, S., and Koide, T., “Study on Load Bearing Capacity of Gears with Smaller Number of Teeth (1st Report, Surface Dueability of Normalized Steel Spur Gears),” Bulletin of JSME, Vol. 28(236), pp. 337-341, 1985.
[48] 葉克明等人,齒輪手冊下冊,機械工業出版社,重慶,1990。
[49] Chiang, C.-H., Kinematics of Spherical Mechanisms, Cambridge University Press, Cambridge, 1988.
指導教授 蔡錫錚(Shyi-Jeng Tsai) 審核日期 2014-11-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明